Mitochondrial DNA d-loop polymorphism analysis for estimation of diversity in chicken flocks of Pavlov breed

Cover Page

Cite item

Full Text

Abstract

Elucidation of the complex origin of various chicken breeds and populations is of essential importance for understanding, preserving and exploiting their genetic diversity. Here, we aim to assess different contributions to mitochondrial genetic diversity of Pavlov chicken breed. Mitochondrial DNA control region (D-loop of 1231/1232 b. p. length) in 37 chickens of Pavlov breed was sequenced. Individuals were selected from three flocks belonging to Federal State Unitary research farm “Gene Pool” (Genofond), Pushkin, Leningrad region, to the collection farm of All-Russian R & D and Technology Institute of Poultry Industry (GNU VNITIP), Sergiev Posad, Moscow region, and to fancy breeders from Barnaul (Altai region). The Pavlov chicken D-loop sequences were compared with D-loop sequences annotated in GenBank for established chicken haplogroups. We have found eleven haplotypes belonging to two haplogroups (E1 and A). Genetic uniformity and stability have been shown for the GNU VNITIP and Barnaul flocks, while D-loop high polymorphism was found in the population from the research farm “Gene Pool”. There appears a tendency for genetic fragmentation of Pavlov chicken breed.

About the authors

Alexander Gennadievich Demin

Saint Petersburg State University

Email: rustle.reed@gmail.com
Postdoc, PhD, Department of Histology and Cytology

Maria Igorevna Danilova

Saint Petersburg State University

Email: noxforest@yandex.ru
Student, BSc, Department of Histology and Cytology

Svetlana Anatolievna Galkina

Saint Petersburg State University

Email: svetlana.galkina@spbu.ru
Assistant professor, PhD, Department of Histology and Cytology

References

  1. Моисеева И. Г. (2006) Породы кур и их генофонды. Под ред. И. А. Захарова. Генетические ресурсы животноводства России. Москва. Наука; С. 229-388.
  2. Серебровский А. С. (1976) Генетический очерк павловской породы кур. Избранные труды по генетике и селекции кур. Москва. Наука; C. 356-378.
  3. Bandelt H.-J., Forster P., Rohl A. (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. V. 16: P. 37-48.
  4. Berthouly-Salazar C., Rognon X., Van T. et al. (2010) Vietnamese chickens: a gate towards Asian genetic diversity. BMC Genet. V. 18 (11). Cited 5.11.2015. doi: 10.1186/1471-2156-11-53.
  5. Dana N., Megens H. J., Crooijmans R. P. et al. (2011) East Asian contributions to Dutch traditional and western commercial chickens inferred from mtDNA analysis. Anim Genet. V. 42 (2): P. 125-133.
  6. Froman D. P., Kirby J. D. (2005) Sperm mobility: phenotype in roosters (Gallus domesticus) determined by mitochondrial function. Biol Reprod. V. 72 (3): P. 562-567.
  7. Fumihito A., Miyake T., Sumi S. et al. (1994) One subspecies of the red jungle fowl (Gallus gallus gallus) fices as the matriarchic ancestor of all domestic breeds. Proc. Natl. Acad. Sci. USA. V. 91 (26): P. 12505-12509.
  8. Fumihito A., Miyake T., Takada M. et al. (1996) Monophyletic origin and unique dispersal patterns of domestic fowls. Proc. Natl. Acad. Sci. USA. V. 93 (13): P. 6792-6795.
  9. Girdland Flink L., Allen R., Barnett R. et al. (2014) Establishing the validity of domestication genes using DNA from ancient chickens. Proc Natl Acad Sci USA. V. 111 (17): P. 6184-6189.
  10. Hall T. A. (1999) BioEdit: a user friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symposium Series. V. 41: P. 95-98.
  11. Hoque M. R., Choi N. R., Sultana H. et al. (2013) Phylogenetic analysis of a privately-owned Korean native chicken populations using mtDNA D-loop variations. Asian-Australas J Anim Sci. V. 26 (2): P. 157-162.
  12. Kanginakudru S., Metta M., Jakati R. D., Nagaraju J. (2008) Genetic evidence from Indian red jungle fowl corroborates multiple domestication of modern day chicken. BMC Evol Biol. V. 8 (174). Cited 5.11.2015. doi: 10.1186/1471-2148-8-174.
  13. Liu Z. G., Lei C. Z., Luo J. et al. (2004) Genetic variability of mtDNA sequences in Chinese native chicken breeds. Asian-Aust. J. Anim. Sci. V. 17: P. 903-907.
  14. Liu Y. P., Wu G. S., Yao Y. G. et al. (2006) Multiple maternal origins of chickens: out of the Asian jungles. Mol Phylogenet Evol. V. 38 (1): P. 12-9.
  15. Lynch M. (2007) The origins of genome architecture. Sunderland. MA: Sinauer Associates, Inc. Publishers.
  16. Miao Y.-W., Peng M.-S., Wu G-S. et al. (2013) Chicken domestication: an updated perspective based on mitochondrial genomes. Heredity (Edinb). V. 110 (3): P. 277-282.
  17. Muchadeyi F. C., Eding H., Simianer H. et al. (2008) Mitochondrial DNA D-loop sequences suggest a Southeast Asian and Indian origin of Zimbabwean village chickens. Anim Genet. V. 39 (6): P. 615-622.
  18. Mwacharo J. M., Bjørnstad G., Mobegi V. et al. (2011) Mitochondrial DNA reveals multiple introductions of domestic chicken in East Africa. Mol Phylogenet Evol. V. 58 (2): 374-382. Cited 5.11.2015. doi: 10.1016/j.ympev.2010.11.027.
  19. Nei M. (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA. V. 70 (12): P. 3321-3323.
  20. Niu D., Fu Y., Luo J. et al. (2002) The origin and genetic diversity of Chinese native chicken breeds. Biochem. Genet. V. 40 (5-6): P. 163-174.
  21. Nishibori M., Tsudzuki M., Hayashi T. et al. (2002) Complete nucleotide sequence of the Coturnix chinensis (blue-breasted quail) mitochondrial genome and a phylogenetic analysis with related species. J Hered. V. 93 (6): P. 439-444.
  22. Nishibori M., Shimogiri T., Hayashi T., Yasue H. (2005) Molecular evidence for hybridization of species in the genus Gallus except for Gallus varius. Animal Genetics. V. 36: P. 367-375.
  23. Oka T., Ino Y., Nomura K. et al. (2007) Analysis of mtDNA sequences shows Japanese native chickens have multiple origins. Anim Genet. V. 38 (3): P. 287-293.
  24. Qu L., Li X., Xu G. et al. (2006) Evaluation of genetic diversity in Chinese indigenous chicken breeds using microsatellite markers. Science in China Series C: Life Sciences. V. 49 (4): P. 332-341.
  25. Ramadan H. A. I., Galal A., Fathi M. M. et al. (2011) Characterization of two Egyptian native chicken breeds using genetic and immunological parameters. Biotechnology in Animal Husbandry. V. 27 (1): P. 1-16.
  26. Revay T., Bodzsar N., Mobegi V. E. et al. (2010) Origin of Hungarian indigenous chicken breeds inferred from mitochondrial DNA D-loopsequences. Animal Genetics. V. 41: P. 548-550.
  27. Rozas J., Sánchez-DelBarrio J. C., Messeguer X., Rozas R. (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics. V. 19 (18): P. 2496-2497.
  28. Stoneking M., Hedgecock D., Higuchi R. G. et al. (1991) Population variation of human mtDNA control region sequences detected by enzymatic amplification and sequence-specific oligonucleotide probes. Am J Hum Genet. V. 48 (2): P. 370-382.
  29. Storey A. A., Athens J. S., Bryant D. et al. (2012) Investigating the global dispersal of chickens in prehistory using ancient mitochondrial DNA signatures. PLoS ONE. V. 7 (7): e39171. Cited 5.11.2015. doi: 10.1371/journal.pone.0039171.
  30. Wu Y. P., Huo J. H., Xie J. F. et al. (2014) Phylogeography and origin of Chinese domestic chicken. Mitochondrial DNA. V. 25 (2): P. 126-130.

Copyright (c) 2015 Demin A.G., Danilova M.I., Galkina S.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies