Genetic diversity comparative evaluation of Pinus Sylvestris L. and Picea x Fennica (regel) kom. native populations and clonal seed orchards in russian Karelia

Cover Page

Cite item

Full Text

Abstract

Genetic diversity levels in 4 native populations of Finnish spruce and Scots pine each and 2 fields of conifer seed orchard growing in Karelia have been investigated using microsatellite loci. As a result high levels of basic genetic diversity parameters have been revealed for native populations of both species. It was found that expected heterozygosity figers calculated for the populations investigated were higher than the observed ones. This case thereby indicates a deficit of heterozygotes in the Karelian pine and spruce populations. Genetic diversity figures found for spruce seed orchard were much lower than for native populations of Picea x fennica. This fact, in our opinion, reflects the unsufficent representation of genetic pool both within the seed orchard field investigated and in spruce plus trees' breeding population on the whole. Scots pine seed orchard has been characterised by a high level of genetic diversity matched to native populations one.

About the authors

Aleksey Alekseevich Ilinov

Institute of Forestry of the Karelian Research Centre of the Russian Academy

Email: ialexa33@yandex.ru
Research Associate (Cand. (PhD) of Agricultural Sciences), Laboratory of dynamics and productivity of boreal forests

Boris Vladimirovich Raevsky

Institute of Forestry of the Karelian Research Centre of the Russian Academy

Email: borisraevsky@gmail.com
Research Associate (Cand. (PhD) of Agricultural Sciences), Laboratory of dynamics and productivity of boreal forests

References

  1. Гончаренко Г. Г., Падутов В. Е., Потенко В. В. (1989) Руководство по исследованию хвойных видов методом электрофоретического анализа изоферментов. Гомель: БелНИИЛХ.
  2. Кравченко А. Н., Экарт А. К., Ларионова А. Я. (2015) Внутривидовая изменчивость и дифференциация природных популяций ели сибирской (Picea obovata Ledeb.) по микросателлитным локусам. Мат. 4-го междунар. сов. «Сохранение лесных генетических ресурсов Сибири». Барнаул, 2015. С. 69-70.
  3. Лесосеменное районирование основных лесообразующих пород в СССР (1982) М.: Лесная промышленность.
  4. Мудрик Е. А., Белоконь М. М., Белоконь Ю. С., Политов Д. В. (2008) Применение микросателлитных маркеров в геногеографических исследованиях хвойных. Мат. Всерос. конф. «Водные и наземные экосистемы: проблемы и перспективы исследований». Вологда. С. 78-81.
  5. Потенко В. В., Ильинов А. А., Гончаренко Г. Г. (1993) Изучение генетической дифференциации популяций ели в Карелии с использованием метода изоферментного анализа. Селекция и семеноводство в Карелии. Петрозаводск: КарНЦ РАН. С. 66-76.
  6. Потокина Е. К., Орлова Л. В., Вишневская М. С. и др. (2012) Генетическая дифференциация популяций ели на северо-западе России по результатам маркирования микросателлитных локусов. Экологическая генетика. Т. X (2): С. 40-49.
  7. Указания по лесному семеноводству в Российской Федерации (2000) М.: ВНИИЦлесресурс.
  8. Янбаев Ю. А., Тренин В. В., Шигапов З. Х. и др. (1998) Генетическая изменчивость и дифференциация сосны обыкновенной (Pinus sylvestris) на территории Карелии. Научные основы селекции древесных растений Севера. Петрозаводск: КарНЦ РАН. С. 25-32.
  9. Экарт А. К., Семерикова С. А., Семериков В. Л. и др. (2014) Применение различных типов генетических маркеров для оценки уровня внутривидовой дифференциации ели сибирской. Сибирский лесной журнал. № 4. С. 84-91.
  10. Adams W. T., Joly R. I. (1980) Genetics of Allozyme Variants in Loblolly Pine. Heredity. V. 71: P. 33-40.
  11. Bergmann F., Ruetz W. (1991) Isoenzyme genetic variation and heterozygosity in random tree samples and selected orchard clones from the same Norway spruce populations. Forest Ecology and Management. V. 46: P. 39-47.
  12. Chaisurisri K., El-Kassaby Y. A. (1993) Estimation of clonal contribution to cone and seed crops in a Sitka spruce seed orchard. Ann. Sci. For. V. 50. P. 461-467.
  13. Conkle M. T. (1979) Isozyme variation and linkage in six conifer species. Proc. Symp, Is. North. Am. For. Trees and For. Ins. P. 11-17.
  14. Danell O. (1990) Possible Gains in Initial Stages of National Tree Improvement Programme Using different Techniques. Proc. from the Nordic tree breeders meeting. Denmark. P. 11-30.
  15. Eckert R. T., Joly R. J., Neale D. B. (1981) Genetics of isozyme variants and linkage relationships among allozyme loci in 35 eastern white pine clones. Can. J. For. Res. V. 11: P. 573-579.
  16. El-Kassaby Y. A., Ritland K. (1996) Impact of selection and breeding on the genetic diversity in Douglas-fir. Biodiv. Conserv. V. 5: P. 795-813
  17. Elsik C. G., Minihan V. T., Hall S. E. et al. (2000) Low-copy microsatellite markers for Pinus taeda L. Genome. V. 43: P. 550-555.
  18. Eriksson G., Ekberg I. (2001) An introduction to Forest Genetics. Uppsala: SLU.
  19. Godt M. J. W., Hamrick J. L., Edwards-Burke M. A., Williams J. H. (2001) Comparisons of genetic diversity in white spruce (Picea glauca) and jack pine (Pinus banksiana) seed orchards with natural populations. Can. J. Forest Res. V. 31: P. 943-949.
  20. Gömöry D. (1995) Simulation of the genetic structure and reproduction in plant populations: short note. Forest Genetics. V. 2: P. 59-63.
  21. Guries R., Ledig F. T. (1981) Genetic structure of populations and differentiation in forest trees. In: Proc Symp Isozymes N Am For Trees For Insects. Conkle M. T. (ed). US Dep Agric-For Ser Pac Southwest For Range Exp Stn Gen Tech Rep PSW-48. P. 42-47.
  22. Hodgetts R. B., Aleksiuk M. A., Brown A. et al. (2001) Development of microsatellite markers for white spruce (Picea glauca) and related species. Theor. Appl. Genet. V. 102: P. 1252-1258.
  23. İçgen Y., Kaya Z., Çengel B. et al. (2006) Potential impact of forest management and tree improvement on genetic diversity of Turkish red pine (Pinus brutia Ten.) plantations in Turkey. Forest Ecol Manag. V. 225: P. 328-336.
  24. Jones T. H., Steane D. A., Jones R. C. et al. (2006) Effects of domestication on genetic diversity in Eucalyptus globulus. Forest Ecology and Management. V. 234: P. 78-84.
  25. Knowles P. (1985) Comparison of isozyme variation among natural stands and plantations: jack pine and black spruce. Can. J. For. Res. V. 15: P. 902-908.
  26. Lefevre F. (2004) Human impacts on forest genetics resources in the temperate zone: an updated review. Forest Ecology and Management. V. 197: P. 257-271.
  27. Moran G. F., Bell J. C. (1987) The origin and genetic diversity of Pinus radiata in Australia. Theoretical and Applied Genetics. V. 73: P. 616-622.
  28. Moran G. F., Bell J. C., Matheson A. C. (1980) The genetic structure and levels of inbreeding in a Pinus radiata D. Don seed orchard. Silvae Genet. V. 29: P. 190-193.
  29. Nei M. (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. V. 89: P. 583-590.
  30. Peakall R., Smouse P. E. (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecology Notes. N 6: P. 288-295.
  31. Rajora O. P. (1999) Genetic biodiversity impacts of silvicultural practices and phenotypic selection in white spruce. Theor. Appl. Genet. V. 99: P. 954-961.
  32. Rajora O. P., Rahman M. H., Dayanandan S., Messeler A. (2001) Isolation, characterization, inheritance and linkage of microsatellite DNA markers in white spruce (Picea glauca) and their usefulness in other spruce species. Theor. Appl. Genet. V. 264: P. 871-882.
  33. Ryu J. B., Eckert R. T. (1983) Foliar isozyme variation in twenty-seven provenances of Pinus sylvestris L.: genetic diversity and population structure. Proc. 28th Northeast. For. Tree Improv. Conf. P. 249-261.
  34. Scotti I., Magni F., Pagila G. P., Morgante M. (2002) Trinucleotide microsatellites in Norway spruce (Picea abies): their features and development of molecular markers. Theor. Appl. Genet. V. 106: P. 40-50.
  35. Sneath P. H. A., Sokal R. R. Numerical Taxonomy. The principles and practice of numerical classification. W. H. Freeman and Co, San Francisco, 1973. 549 p.
  36. Soranzo N., Provan J., Powell W. (1998) Characterization of microsatellite loci in Pinus sylvestris L. Mol Ecol. V. 7: P. 1260-1261.
  37. Stefenon V. M., Gailing O., Finkeldey R. (2008) Genetic structure of plantations and the conservation of genetic resources of Brazilian pine (Araucaria angustifolia). Forest Ecol. Manag. V. 255: P. 2718-2725.
  38. Stoehr M. U., El-Kassaby Y. A. (1997) Levels of genetic diversity at different stages of the domestication cycle of interior spruce in British Columbia. Theor. Appl. Genet. V. 94: P. 83-90.
  39. Thomas B. R., Macdonald S. E., Hicks M. et al. (1999) Effects of reforestation methods on genetic diversity of lodgepole pine: an assessment using microsatellite and randomly amplified polymorphic DNA markers. Theor. Appl. Genet. V. 98. P. 793-801.
  40. Wellman H., Ritland C., Ritland K. (2003) Genetic effects of domestication in western hemlock Tsuga heterophylla. Forest Genet. V. 10: P. 229-239
  41. Williams C. G., Hamrick J. L. (1995) Genetic diversity levels in an advanced generation Pinus taeda L. program measured using molecular markers. FAO Forest Gene. Resour. Newslett. V. 23: P. 45-50.

Copyright (c) 2015 Ilinov A.A., Raevsky B.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies