The genetics of the traits determining adaptability to abiotic stress in rice (Oryza sativa L.)

Cover Page

Cite item

Full Text

Abstract

Most of rice cultivationarea in Russia, characterized by unfavorable soil conditions: salinity varying degrees and types, alkalinization, lack of mineral nutrients. In addition, in the Kuban in one of the most Northern region of rice cultivation during of rice the growing season marked as high more than 40 °C and low temperature 0 °C. Consequently, to increase the production of culture less necessary increasing potential productivity then stability of yield, and complex of resistance to stress genes. The article presents data on polymorphism and the molecular marking of characteristics defining adaptability to various abiotic stresses.

About the authors

Evgeniy Mixailovich Kharitonov

All-Russian scientific research Institute of rice (rice research Institute)

Email: serggontchar@mail.ru
Director, Academician

Yulia Constantinovna Goncharova

All-Russian scientific research Institute of rice (rice research Institute)

Email: serggontchar@mail.ru
Candidate of biological sciences, Head of laboratory of genetics

Evgenia Alekcandrovna Maluchenko

All-Russian scientific research Institute of rice (rice research Institute)

Email: serggontchar@mail.ru
graduate studen, Laboratory of genetics

References

  1. Агарков В. Д., Касьянов А. И. (2002) К обоснованию высоких и низких урожаев риса. Рисоводство. № 1: С. 25-30.
  2. Гончарова Ю. К., Иванов А. Н. (2006) О взаимосвязи между эффективностью работы фотосинтетического аппарата, адаптивностью и стабильностью урожайности у различных сортов риса. Сельскохозяйственная биология. № 5: С. 92-97.
  3. Гончарова Ю. К., Иванов А. Н., Князева А. Н., Глазко В. И. (2007) Эстеразные спектры и адаптивная пластичность сортов риса. Доклады Российской академии сельскохозяйственных наук. № 1: С. 3-4.
  4. Гончарова Ю. К. (2013) Селективная элиминация аллелей при получении дигаплоидных линий в культуре пыльников риса. Генетика. Т. 49 (2): С. 196-203.
  5. Гончарова Ю. К., Харитонов Е. М. (2008) Взаимосвязь между устойчивостью к высоким температурам и стабильностью урожаев у риса. Аграрная Россия. № 3: С. 22-24.
  6. Гончарова Ю. К. (2009 a) Воздействие температурного стресса на продуктивность риса. Вестник Российской академии сельскохозяйственных наук. № 2: С. 40-42.
  7. Гончарова Ю. К. (2009 b) Генетические основы повышения устойчивости к высоким температурам у риса. Аграрная наука. № 9: С 35-37.
  8. Гончарова Ю. К., Харитонов Е. М. (2010) Механизм солеустойчивости российских сортов риса. Аграрный вестник Урала 2010: № 8 (74), С. 45-48.
  9. Гончарова Ю. К. (2010 а) Наследование признака «устойчивость к высоким температурам» у риса. Вестник ВОГиС. Т. 14 (4): С. 714-719.
  10. Гончарова Ю. К., Харитонов, Е. В. Литвинова (2010) Природа гетерозисисного эффекта. Доклады РАСХН. № 4: С. 10-12.
  11. Гончарова Ю. К. (2010 b) Наследование признаков, определяющих физиологический базис гетерозиса у гибридов риса. Сельскохозяйственная биология. № 5: С. 72-75.
  12. Гончарова Ю. К., Харитонов Е. М. (2013) О генетико-физиологических механизмах солеустойчивости у риса (Oryzasativa L.). Сельскохозяйственная биология. № 3: С. 3-11.
  13. Дымова О. В., Головко Т. К. (2007) Реакция устьиц на изменение температуры и влажности воздуха у растений разных сортов пшеницы, районированных в контрастных климатических условиях. Физиология растений. Т. 54 (1): С. 47-54.
  14. Крупнов В. А., Германцев Л. А. (2001) Влияние температуры воздуха на продуктивность яровой пшеницы в зоне каштановых почв Поволжья. Вестник Российской Академии сельскохозяйственной наук. № 2: С. 33-35.
  15. Пташкин В. В. (1968) Влияние внешних условий на органогенез различных сортов риса. Кр. ит. науч.-исслед. работы за 1964-1965 гг. ВНИИ риса. Краснодар: С. 3-8.
  16. Пташкин В. В. (1970) Влияние внешних условий на структуру урожая риса: Автореф. дис. … канд. с.-х. наук. Краснодар: 33 с.
  17. Пташкин В. В. (1971) Влияние внешних условий на озерненность метелок главного и бокового побегов риса. Тр. ин-та. Всесоюз. науч.-исслед. ин-т риса. Вып. 1: С. 34-41.
  18. Рябушкина Н. А. (2005) Синергизм действия метаболитов в ответных реакциях растений на стрессовые фактор. Физиология растении. Т. 52 (4): С. 614-621.
  19. Фенелонова Т. М. (1962) Пути увеличения числа колосков на метелке риса: Автореф. дис.. канд. биол. наук. Краснодар: С. 20.
  20. Харитонов Е. М., Гончарова Ю. К. (2009) Показатели продуктивности у сортов риса отечественной селекции при повышенных температурах в связи с проблемой глобального изменения климата. Сельскохозяйственная биология. Серия «Биология растений». 1: С. 16-20.
  21. Шахбазов В. Г. (2007) Термотест как метод прогнозирования гетерозиса и общей жизнеспособности семян. Методы оценки устойчивости растений к неблагоприятным условиям среды. С. 71-77.
  22. Akbar M., Yabuno T., Nakao S. (1977) Breeding for saline resistant varieties of rice. I. Variability for salt tolerance among some rice varieties. Jpn. J. Breed. V. 22: Р. 277-284.
  23. Amtmann A., Sanders D. (1999) Mechanisms of Na+ uptake by plant cells. Adv. Bot. Res. V. 29: Р. 75-112.
  24. Berthomieu P., Conejero G., Nublat A. et al. (2003)Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J. V. 22: P. 2004-2014.
  25. Bhumbla D. R., Abrol I. P. (1978) Saline and sodic soils. In: Soils and rice. International Rice Research Institute, Manila, Philippines: P. 719-738.
  26. Bohnert H. J., Gong Q., Li P., Ma S. (2006) Unraveling abiotic stress tolerance mechanisms - getting genomics going. Curr. Opin. Plant. Biol. V. 9: P. 180-188.
  27. Carden D. E., Walker D. J., Flowers T. J., Miller A. J. (2003) Single-cell measurements of the contribution of cytosolic Na+ and K+ to salt tolerance. Plant Physiol. V. 131: P. 676-683.
  28. Cassman K. G., Peng S., Olk D. C., Ladha J. K., Reichardt W., Dobermann A., Singh U. (1998) Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems. Field Crops Res. V. 56: P. 7-39.
  29. Davenport R. J., Tester M. (2000) A weakly voltage-dependant, nonselective cation channel mediates toxic sodium influx in wheat. Plant Physiol. V. 122: P. 823-834.
  30. Demidchik V., Tester M. (2002) Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots. Plant Physiol. V. 128: P. 379-387.
  31. Dionisio-Sese M. L., Tobita S. (2000) Effects of salinity on sodium content and photosynthetic responses of rice seedlings differing in salt tolerance. J. Plant Physiol. V. 157: P. 54-58.
  32. Dong Wei, Kehui Cui, Guoyou Ye, Junfeng Pan, Jing Xiang, Jianliang Huang, LixiaoNie. (2012 a) QTL mapping for nitrogen-use efficiency and nitrogen-deficiency tolerance traits in rice Plant Soil. V. 359: P. 281-295.
  33. Dong Wei, Kehui Cui, Junfeng Pan, Qiang Wang, Kai Wang, Xiaomei Zhang, Jing Xiang, LixiaoNie, Jianliang Huang. (2012 b) Identification of quantitative trait locifor grain yield and its components in response to low nitrogen application in rice. AJCS. V. 6: P. 986-994.
  34. Edwards J. D., Janda J., Sweeney M. T., Gaikwad A. B., Liu B., Leung H., Galbraith D. W. (2008) Development and evaluation of a high-throughput, low-cost genotyping platform based on oligonucleotide microarrays in rice. Plant Methods. V. 4: P. 13.
  35. Flowers T. J., Yeo A. R. (1981) Variability in the resistance of sodium chloride salinity within rice (Oryza sativa L.) varieties. New Phytol. V.88: P. 363-373.
  36. Garcia A., Rizzo C. A., Ud-Din J. еt al. (1997) Sodium and potassium transport to the xylem are inherited independently in rice, and the mechanism of sodium: potassium selectivity differs between rice and wheat. Plant Cell Environ. V. 20: P. 1167-1174.
  37. Garciadeblas B., Senn M. E., Banuelos A., Rodriguez-Navarro A. (2003) Sodium transport and HKT transporters: the rice model. Plant J. V. 34: P. 788-801.
  38. Golldack D., Su H., Quigley F. et al. (2002) Characterization of a HKT-type transporter in rice as a general alkali cation transporter. Plant J. V. 31: P. 529-542.
  39. Grattan S. R., Zeng L., Shannon M. C., Roberts S. R. (2002) Rice is more sensitive to salinity than previously thought. Cal. Agric. V. 56: P. 189-195.
  40. Hirochika H., Guiderdoni E., An G. et al. (2004)Rice mutant resources for gene discovery. Plant Mol. Biol. V. 54: P. 325-334.
  41. Horie T., Yoshida K., Nakayama H. et al. (2001) Two types of HKT transporters with different properties of Na+ and K+ transport in Oriza sativa. Plant J., 27: 115-128.
  42. Horie T., Schroeder J. I. (2004) Sodium transporters in plants: diverse genes and physiological functions. Plant Physiol. V.136: P. 2457-2462.
  43. Ismail M., Heuer S., Thomson M. J., Wissuwa M. (2007) Genetic and genomic approaches to develop rice germplasm for problem soils. Plant. Mol. Biol. V. 65 (4): P. 547-570.
  44. Kabaki N. (1993) Growth and yield of japonica-indica hybid rice. Jpn. Agric. Res. Q. V. 27: P 88-94.
  45. Krishnan P., Rao A., V. Surya. (2005) Еffесts of genotype and environment on seed yield and quality of rice. J. Agr. Sci.: C. 283-292.
  46. Laurie S., Feeney K., Maathuis F. J. M. et al. (2002)A role for HKT1 in sodium uptake by wheat roots. Plant J. V. 32: P. 139-149.
  47. Li B. Z., Merrick M., Li S. M., Li H. Y., Zhu S. W., Shi W. M., Su Y. H. (2009)Molecular basis and regulation of ammonium transporter in rice. Rice Science. V. 16: P. 314-322.
  48. Li J., Xie Y., Dai A., Liu L., Li Z. (2009). Root and shoot traits responses to phosphorus deficiency and QTL analysis at seedling stage using introgression lines of rice. Journal of Genetics and Genomics. V. 36: P. 173-183.
  49. Lian X., Xing Y., Yan H., Xu C., Li X., et al. (2005)QTLs for low nitrogen tolerance at seedling stage identified using a recombinant inbred line population derived from an elite rice hybrid. Theor. Appl. Genet. V. 112: P. 85-96.
  50. Maathuis F. J. M., Filatov V., Herzyk P. et al. (2003) Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. Plant J. V. 35: P. 675-692.
  51. MackillD. J., Coffman W. R., Rutger J. N. (1982) Pollen shedding and combining ability for high temperature tolerance in rice. Crop Science. N 22: P. 730-733.
  52. Moradi F., Ismail A. M., Gregorio G. B., Egdane J. A. (2003) Salinity tolerance of rice during reproductive development and association with tolerance at the seedling stage. Ind. J. Plant Physiol. V. 8: P. 105-116.
  53. Moradi F., Ismail A. M. (2007) Responses of photosynthesis, chlorophyll fluorescence and ROS scavenging system to salt stress during seedling and reproductive stages in rice. Ann. Bot. V. 99: P. 1161-1173.
  54. Mcnally K. L., Bruskiewich R., Mackill D., Buell C. R., Leach J. E., Leung H. (2006) Sequencing multiple and diverse rice varieties. Connecting whole-genome variation with phenotypes. Plant Physiol. V. 141: P. 26-31.
  55. Munns R., James R., Lauchli A. (1999) Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. V. 5: P. 1025-1043.
  56. Obara M., Sato T., Sasaki S., Kashiba K., Nagano A., Nakamura I., Ebitani T., Yano M., Yamaya T. (2004)Identification and characterization of a QTL on chromosome 2 for cytosolic glutamine synthetase content and panicle number in rice. Theoretical and Applied Genetics: V. 110: P. 1-11.
  57. Obara M., Tamura W., Ebitani T., Yano M., Sato T., Yamaya T. (2010) Fine-mapping of qRL6.1, a major QTL for root length of rice seedlings grown under a wide range of NH4+ concentrations in hydroponic conditions Theor. Appl. Genet. V. 121: P. 535-547.
  58. Pearson G. A., Bernstein L. (1959) Salinity effects at several growth stages of rice. Agron. J. V. 51: P. 654-657.
  59. Pessarakli M., Szabolcs I. (2006) Soil salinity and sodicity as particular plant/crop stress factors. In: Handbook of plant and crop stress. M. Pessarakli (ed.). Dekker, NY: P. 1-16.
  60. Peng S., Yang J., Lasa R. S., Sanico A. L., Visperas R. M., Son T. T. (2003) Physiological bases of heterosis and crop management strategies for hybrid rice in the tropics. Hybrid Rice for Food Security, Poverty Alleviation, and Environmental Protection: P. 153-173.
  61. Peng S., Ismail A. M. (2004) Physiological basis of yield and environmental adaptation in rice. In: Physiology and biotechnology integration for plant breeding. H. T. Nguyen, A. Blum (eds.). Marcel Dekker, NY: P. 83-140.
  62. Piao Z., Cho Y. I., Koh H. J. (2001) Inheritance of physiological nitrogen-use efficiency and relationship among its associated charaters in rice. Korean J. Breed. V. 33: P. 332-337.
  63. Ponnamperuma F. N. (1994) Evaluation and improvement of lands for wetland rice production. In: Rice and problem soils in South and Southeast Asia. IRRI Discussion Paper Series No. International Rice Research Institute, Manila, Philippines: P. 4-25.
  64. Ren Z. H., Gao J. P., Li L. G. et al. (2005 a) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genet. V. 37: P. 1141-1146.
  65. Ren Z. H., Gao J. P., Li L. G., Cai X. L., Huang W., Chao D. Y., Zhu M. Z., Wang Z. Y., Luan S., Lin H. X. (2005 b) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat. Genet. V. 37: P. 1141-1146.
  66. Rengel Z. (1992) The role of calcium in salt toxicity. Plant Cell Envron. V. 15: P. 625-632.
  67. Rubio F., Gassmann W., Schroeder J. I. (1995) Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science. V. 270: P. 1660-1663.
  68. Rus A., Yokoi S., Sharkhuu A. et al. (2001) AtHKT1 is a salt tolerance determinant that controls Na+ entry into plant roots. PNAS USA. V. 98: P. 14150-14155.
  69. Satake T., Yoshida S. (1978) High temperature- induced sterility in Indica rice in the flowering stage. Japan Jour. Crop Science. N 47: P. 6-17.
  70. Schroeder J. I., Ward J. M., Gassmann W. (1994) Perspectives on the physiology and structure of inward-rectifying K+ channels in higher plants: biophysical implications for K+ uptake. Annual. Rev. Biophys. Biomol. Struct. V. 23: P. 441-471.
  71. Seki M., Okamoto M., Matsui A. et al. (2009) Microarray Analysis for Studying the Abiotic Stress Responses in Plants. Molecular Techniques in Crop Improvement: P. 333-355.
  72. Senadheera P., Singh R. K., Frans J. M. (2009) Differentially expressed membrane transporters in rice roots may contribute to cultivar dependent salt tolerance Exp Bot. July; V. 60 (9): P. 2553-2563.
  73. Senapathy S., Kunnummal K. V., Palaniappan M., Marappa M. (2008) QTL and QTL × environment effects on agronomic and nitrogen acquisition traits in rice.J Integr. Plant Biol. V. 50: P. 1108-1117.
  74. Sexcion F. H., Egdane J. A., Ismail A. M., Sese M. L. (2009) Morpho-physiological traits associated with tolerance of salinity during seegling stage in rice (Oryza sativa L.) Phillippine Journal of Crop Science. V. 34: P. 27-37.
  75. Singhl R. K., Glenn B., Gregoriol K. et al. (2007) QTL mapping for salinity tolerance in rice. Physiol. Mol. Biol. Plant. V. 13: P. 87-99.
  76. Srividya A., Vemireddy L. R., Hariprasad A. S., Jayaprada M., Sridhar S., Ramanarao P. V., Anuradha G., Siddiq E. A. (2010) Identification and mapping of landrace derived QTL associated with yield and its components in rice under different nitrogen levels and environments. International Journal of Plant Breeding and Genetics. V. 4: P. 210-227.
  77. Thomson M.J, M. Ocampo, J. Egdane, M. A. Rahman, A. G. Sajise, D. L. Adorada, E. Tumimbang-Raiz, E. Blumwald, Z. I. Seraj, R. K. Singh, G. B. Gregorio, A. M. Ismail. (2010) Characterizing the Saltol Quantitative Trait Locus for Salinity Tolerance in Rice, Rice. V. 3: P. 148-160.
  78. Turan S., Cornish K., Kumar S. (2012) Salinity tolerance in plants: Breeding and genetic engineering Australian Journal Crop Science AJCS. V. 6 (9): P. 1337-1348.
  79. Uozumi N., Kim E. J., Rubio F. et al. (2000)The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopuslaevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiol. V. 122: P. 1249-1259.
  80. Walia H., Wilson C., Condamine P., Liu X., Ismail A. M., Zeng L. H., Wanamaker S. I., Mandal J., Xu J., Cui X. P., Close T. J. (2005) Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol. V. 139: P. 822-835.
  81. Wang D. L., Zhu J., Li Z. K. and Paterson A. H. (1999)Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. Theor. Appl. Genet. P. 1255-1264.
  82. Yeo A. R., Flowers T. J. (1983) Varietal differences in the toxicity of sodium ions in rice leaves. Physiol. Plant. V. 59: P. 189-195.
  83. Yeo A. R., Flowers T. J. (1986) Salinity resistance in rice (Oryza sativa L.) and a pyramiding approach to breeding varieties for saline soils. Aust. J. Plant. Physiol. V. 13: P. 161-173.
  84. Yeo A. R., Yeo M. E., Flowers S. A., Flowers T. J. (1990)Screening of rice (Oryza sativa L.) genotypes for physiological characters contributing to salinity resistance, and their relationship to overall performance. Theor. Appl. Genet. V. 79: P. 377-384.
  85. Yoshida S., Forno D. A., Cock D. H., Gomez K. A. (1976) Laboratory manual for physiological studies of rice. IRRI, Philippines: P. 14-17.
  86. Young Cho, Wenzhu Jiang, Joong-Hyoun Chin, Zhongze Piao, Yong-Gu Cho, Susan R. McCouch, Hee-Jong Koh. (2007) Identification of QTLs Associated with Physiological Nitrogen Use Efficiency. Rice Mol. Cells. V. 23 (1): P. 72-79
  87. Zheng L., Shannon M. C., Lesch S. M. (2001)Timing of salinity stress affecting rice growth and yield components. Agric. Water Manag. V. 48: P. 191-206.

Copyright (c) 2015 Kharitonov E.M., Goncharova Y.C., Maluchenko E.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies