LIM-kinase 1 in regulation of cognitive and locomotor functions of Drosophila melanogaster

Cover Page

Cite item

Full Text

Abstract

Background: LIM-kinase 1 is the key enzyme of actin remodeling which is necessary for synaptic plasticity during learning and memory formation. Deletion of limk1 leads to the development of Williams syndrome, accompanied by cognitive impairment and motor dysfunction, which refers to cytoskeleton diseases – cofilinopatia. Cofilinopatias are characterized by the formation of cofilin-actin complexes in neurons that disrupt vesicular transport and identify the early stages of dementia. Conclusion: In the present article, we briefly reviewed data about role of LIMK1 function in communicative sound production during courtship behavior, learning acquisition and memory formation.

About the authors

Alena Nikolayevna Kaminskaya

Sechenov Institute of Comparative Physiology and Biochemistry, RAS

Email: kaminskayaan@mail.ru
Ph.D., junior research worker, Lab. of comparative physiology of sensory sistems

Anna Vladimirovna Medvedeva

Pavlov Institute of Physiology, RAS

Email: avmed56@mail.ru
Ph.D., research worker, Lab. of neurogenetics

References

  1. Каминская А. Н., Никитина Е. А., Паялина Т. Л., с соавт., 2011. Влияние соотношения изоформ LIMK1 на поведение ухаживания Drosophila melanogaster: комплексный подход // Экологическая генетика. Т. 9 (4). С. 3–14.
  2. Каминская А. Н., 2012. Особенности поведения Drosophila melanogaster при различной структуре гена limk1: Автореф. дис. канд. биол. наук. СПб, 20 с.
  3. Лобашев М. Е., 1960. О параллельных — аналогичных и гомологичных рядах развития основных свойств высшей нервной деятельности в филогенезе животных // Материалы 2-го научного совещания, посвященного памяти Л. А. Орбели, Москва, Ленинград, С. 16–23.
  4. Лопатина Н. Г., Зачепило Т. Г., Чеснокова Е. Г., Савватеева-Попова Е. В., 2010. Поведенческие и молекулярные последствия дефицита эндогенных кинуренинов у медоносной пчелы (Apis mellifera L.) // Журнал высшей нервной деятельности им. И. П. Павлова. Т. 60 (2). С. 229–235.
  5. Медведева А. В., Молотков Д. А., Никитина Е. А. с соавт., 2008. Системная регуляция генетических и цитогенетических процессов сигнальным каскадом ремоделирования актина: локус agnostic дрозофилы // Генетика. Т. 44 (6). С. 669–681.
  6. Попов А. В., Каминская А. Н., Савватеева-Попова Е. В., 2009. Поведение ухаживания, коммуникационное звукоизлучение и устойчивость к стрессу мутантов дрозофилы Drosophila melanogaster по гену agnostic, кодирующему LIMK1 // Журнал эволюционной биохимии и физиологии. Т. 45 (2). С. 184–190.
  7. Попов А. В., Савватеева-Попова Е. В., Камышев Н. Г., 2000. Особенности акустической коммуникации у плодовых мушек Drosophila melanogaster // Сенсорные системы. Т. 14. С. 60–74.
  8. Савватеева-Попова Е. В., Переслени А. И., Шарагина Л. М. с соавт., 2004. Особенности архитектуры Х-хромосомы, экспрессии LIM-киназы 1 и рекомбинации у мутантов дрозофилы локуса agnostic: модель синдрома Вильямса человека // Генетика. Т. 40 (6). С. 749–769.
  9. Ang L. H., Chen W., Yao Y. et al., 2006. Lim kinase regulates the development of olfactory and neuromuscular synapses // Dev. Biol. Vol. 293 (1). P. 178–190.
  10. Angeli S., Shao J., Diamond M. I., 2010. F-actin binding regions on the androgen receptor and huntingtin increase aggregation and alter aggregate characteristics // PLoS One. Vol. 5 (2). P. e9053.
  11. Bailey C. H., Bartsch D., Kandel E. R., 1996. Toward a molecular definition of long-term memory storage // Proc. Natl. Acad. Sci. USA. Vol. 93 (24). P. 13 445–13 452.
  12. Bamburg J. R., Bloom G. S., 2009. Cytoskeletal pathologies of Alzheimer disease // Cell Motil Cytoskeleton. Vol. 66 (8). P. 635–649.
  13. Bamburg J. R., Zheng J. Q., 2010. ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity // Nat Neurosci. Vol. 13. N 10. P. 1208–1215.
  14. Bernstein B. W., Bamburg J. R., 2003. Actin-ATP hydrolysis is a major energy drain for neurons // J. Neurosci. Vol. 23 (1). P. 1–6.
  15. Bernstein B. W., Bamburg J. R., 2010. ADF/Cofilin: a functional node in cell biology // Trends in Cell Biology. Vol. 20. P. 187–195.
  16. Bernstein B. W., Chen H., Boyle J. A., Bamburg J. R., 2006. Formation of actin-ADF/cofilin rods transiently retards decline of mitochondrial potential and ATP in stressed neurons // Am. J. Physiol. Cell Physiol. Vol. 291 (5). P. 828–839.
  17. Birkenfeld J., Betz H., Roth D., 2003. Identification of cofilin and LIM-domain-containing protein kinase 1 as novel interaction partners of 14–3-3 zeta // Biochem. J. Vol. 369 (Pt 1). P. 45–54.
  18. Boissonneault V, Plante I, Rivest S, Provost P., 2009. MicroRNA-298 and microRNA-328 regulate expression of mouse beta-amyloid precursor proteinconverting enzyme 1 // J. Biol. Chem. — 2009. — Vol. 284. — P. 1971–1981.
  19. Carlisle H. J., Manzerra P., Marcora E., Kennedy M. B., 2008. SynGAP regulates steady-state and activity-dependent phosphorylation of cofilin // J. Neurosci. Vol. 28 (50). P. 13 673–13 683.
  20. Chen Q., Peto C. A., Shelton G. D. et al., 2009. Loss of modifier of cell adhesion reveals a pathway leading to axonal degeneration // J. Neurosci. Vol. 29 (1). P. 118–130.
  21. Cox L. J., Hengst U., Gurskaya N. G., 2008. Intra-axonal translation and retrograde trafficking of CREB promotes neuronal survival // Nature cell biology. Vol. 10 (2). P. 149–159.
  22. Davis R. C., Maloney M. T., Minamide L. S. et al., 2009. Mapping cofilin-actin rods in stressed hippocampal slices and the role of cdc42 in amyloid-beta-induced rods // J. Alzheimers Dis. Vol. 18 (1). P. 35–50.
  23. Davis R. C., Marsden I. T., Maloney M. T. et al., 2011. Amyloid beta dimers/trimers potently induce cofilin-actin rods that are inhibited by maintaining cofilin-phosphorylation // Mol. Neurodegener. Vol. 6. P. 1 –16.
  24. DiFiglia M, Sapp E, Chase K. et al., 1995. Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons // Neuron. Vol. 14. P. 1075–1081.
  25. Edelmann L., Spiteri E., Koren K. et al., 2001. AT-rich palindromes mediate the constitutional t (11;22) translocation // Am. J. Hum. Genet. Vol. 68 (1). P. 1–13.
  26. Edwards D. C., Gill G. N., 1999. Structural features of LIM kinase that control effects on the actin cytoskeleton // J. Biol. Chem. Vol. 274 (16). P. 11 352–11 361.
  27. Foletta V. C., Moussi N., Sarmiere P. D. et al., 2004. LIM kinase 1, a key regulator of actin dynamics, is widely expressed in embryonic and adult tissues // Experimental Cell Research. Vol. 294. P. 392–405.
  28. Freeman M. R., Doherty J., 2006 Glial cell biology in Drosophila and vertebrates // Trends Neurosci. 2006 Vol. 29 (2) P. 82–90.
  29. Fuentes-Medel Y., Logan M. A., Ashley J. et al., 2009. Glia and muscle sculpt neuromuscular arbors by engulfing destabilized synaptic boutons and shed presynaptic debris // PLoS Biol. Vol. 7 (8). P. e1000184.
  30. Fulga T. A., Elson-Schwab I., Khurana V. et al., 2007. Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo // Nat. Cell Biol. Vol. 9 (2). P. 139–149.
  31. Gao J., Wang W. Y., Mao Y. W. et al., 2010. A novel pathway regulates memory and plasticity via SIRT1 and miR-134 // Nature. Vol. 466 (7310). P. 1105–1114.
  32. Gorovoy M., Niu J., Bernard O. et al., 2005. LIM kinase 1 coordinates microtubule stability and actin polymerization in human endothelial cells // J. Biol. Chem. Vol. 280 (28). P. 26 533–26 542.
  33. Gu J., Lee C. W., Fan Y. et al., 2010. ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity // Nat. Neurosci. Vol. 13 (10). P. 1208–1215.
  34. Hayworth C. R., Moody S. E., Chodosh L. A. et al., 2006. Induction of neuregulin signaling in mouse schwann cells in vivo mimics responses to denervation // J. Neurosci. Vol. 26 (25). P. 6873–6884.
  35. Hebert S. S., Horre K., Nicolai L. et al., 2008. Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/beta-secretase expression // Proc. Natl. Acad. Sci. USA. — 2008. — Vol. 105. — P. 6415–6420.
  36. Heredia L., Helguera P., de Olmos S. et al., 2006. Phosphorylation of actin-depolymerizing factor/cofilin by LIM-kinase mediates amyloid beta-induced degeneration: a potential mechanism of neuronal dystrophy in Alzheimer's disease // J. Neurosci. Vol. 26. P. 6533–6542.
  37. Hess D. M., Scott M. O., Potluri S. et al., 2007. Localization of TrkC to Schwann cells and effects of neurotrophin-3 signaling at neuromuscular synapses // J. Comp. Neurol. Vol. 501 (4). P. 465–482.
  38. Hiraoka J., Okano I., Higuchi O. et al., 1996. Self-association of LIM-kinase 1 mediated by the interaction between an N-terminal LIM domain and a C-terminal kinase domain // FEBS Lett. Vol. 399 (1–2). P. 117–121.
  39. Jang D. H., Han J. H., Lee S. H. et al., 2005. Cofilin expression induces cofilin-actin rod formation and disrupts synaptic structure and function in Aplysia synapses // Proc. Natl. Acad. Sci. USA. 2005. Vol. 102 (44). P. 16 072–16 077.
  40. Johnson R., Zuccato C., Belyaev N. D. et al., 2008. A microRNA-based gene dysregulation // Neurobiol. Dis. 2008. Vol. 29 (3). P. 438–445.
  41. Kamyshev N. G., Iliadi K. G., Bragina J. V., 1999. Drosophila conditioned courtship: two ways of testing memory // Learn Mem Vol. 6 (1). P. 1–20.
  42. Kim J., Inoue K., Ishii J. et al., 2007. A MicroRNA feedback circuit in midbrain dopamine neurons // Science. 2007. Vol. 317 (5842). P. 1220–1224.
  43. Kobayashi M., Nishita M., Mishima T. et al., 2006. MAPKAPK-2-mediated LIM-kinase activation is critical for VEGF-induced actin remodeling and cell migration // EMBO J. Vol. 25 (4). P. 713–726.
  44. Konopka W., Schütz G., Kaczmarek L., 2011. The microRNA contribution to learning and memory // Neuroscientist. Vol. 17 (5). P. 468–474.
  45. Kuhn D. E., Nuovo G. J., Martin M. M. et al., 2008. Human chromosome 21-derived miRNAs are overexpressed in Down syndrome brains and hearts // Biochem. Biophys. Res. Commun. 2008. Vol. 370 (3). P. 473–477.
  46. Landles C, Sathasivam K, Weiss A. et al., 2010. Proteolysis of mutant huntingtin produces an exon 1 fragment that accumulates as an aggregated protein in neuronal nuclei in Huntington disease // J. Biol. Chem. Vol. 285. P. 8808–8823.
  47. Lee-Hoeflich S. T., Causing C. G., Podkowa M., 2004. Activation LIMK1 by binding to the BMP receptor, BMPII, regulates BMP-dependent dendritogenesis // EMBO. Vol. 23. P. 4792–4801.
  48. Li R., Soosairajah J., Harari D. et al., 2006. Hsp90 increases LIM kinase activity by promoting its homo-dimerization // FASEB J. Vol. 20. P. 417–425.
  49. Lim M. K., Kawamura T., Ohsawa Y. et al., 2007. Parkin interacts with LIM kinase 1 and reduces its cofilin-phosphorylation activity via ubiquitination // Exp. Cell Res. Vol. 313. P. 2858–2874.
  50. Lindström N., Neves C., McIntosh R. et al., 2010. Tissue specific characterisation of Lim-kinase 1 expression during mouse embryogenesis // Gene Expr. Patterns. Vol. 11 (3–4). P. 221–232.
  51. Liu Z., Sall A., Yang D., 2008. MicroRNA: An emerging therapeutic target and intervention tool // Int. J. Mol. Sci. Vol. 9 (6). P. 978–999.
  52. Maciver S. K., Harrington C. R., 1995. Two actin binding proteins, actin depolymerizing factor and cofilin, are associated with Hirano bodies // Neuroreport. 1995. Vol. 6 (15). P. 1985–1993.
  53. Maloney M. T., Bamburg J. R., 2007. Cofilin-mediated neurodegeneration in Alzheimer's disease and other amyloidopathies // Mol Neurobiol. Vol. 35. (1). P. 21–44.
  54. Manetti F., 2011. LIM Kinases are attractive targets with many macromolecular partners and only a few small molecule regulators // Medicinal Research Reviews. Vol. doi: 10.1002/med.20230. P. 1–31.
  55. Maselli A., Furukawa R., Thomson S. A. M., et al., 2003. Formation of Hirano bodies induced by expression of an actin cross-linking protein with again-of-function mutation // Eukariotic Cell. Vol. 2 (4). P. 778–787.
  56. Masliah E., 2000. The role of synaptic proteins in Alzheimer's disease // Ann. N. Y. Acad. Sci. Vol. 924. P. 68–75.
  57. McBride S. M. J., Giuliani G., Choi C. et al., 1999. Mushroom body ablation impairs short-term memory and long-term memory of courtship conditioning in Drosophila melanogaster // Neuron. Vol. 24 (4). P. 967–977.
  58. Meng Y., Zhang Y., Tregoubov V. et al., 2002. Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice // Neuron. Vol. 35. P. 121–133.
  59. Minamide L. S., Maiti S., Boyle J. A. et al., 2010. Isolation and Characterization of Cytoplasmic Cofilin-Actin Rods // Journal of biological chemistry. Vol. 285. — P. 5450–5460.
  60. Minamide L. S., Striegl A. M., Boyle J. A. et al., 2000. Neurodegenerative stimuli induce persistent ADF /cofilin-actin rods that disrupt distal neurite function // Nat. Cell Biol. Vol. 2. P. 628–636.
  61. Moloney A., Sattelle D. B., Lomas D. A., Crowther D. C. 2010. Alzheimer's disease: insights from Drosophila melanogaster models // Trends Biochem Sci. Vol. 35 (4). P. 228–235.
  62. Munsie L., Caron N., Atwal R. S. et al., 2011. Mutant huntingtin causes defective actin remodeling during stress: defining a new role for transglutaminase 2 in neurodegenerative disease // Hum. Mol. Genet. Vol. 20 (10). P. 1937–1951.
  63. Nadella K. S., Saji M., Jacob N. K. et al., 2009. Regulation of actin function by protein kinase A-mediated phosphorylation of Limk1 // EMBO Rep. Vol. 10 (6). P. 599–605.
  64. Nagata K., Ohashi K., Yang N., Mizuno K., 1999. The N-terminal LIM domain negatively regulates the kinase activity of LIM-kinase 1 // Biochem. J. Vol. 343 Pt1. P. 99–105.
  65. Packer A. N., Xing Y., Harper S. Q., Jones L., Davidson B. L. et al., 2008. The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington's disease // J. Neurosci. 2008. Vol. 28 (53). P. 14 341–14 346.
  66. Perkins D. O., Jeffries C. D., Jarskog L. F. et al., 2007. microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder // Genome Biol. 2007. Vol. 8 (2). P. R27.
  67. Reddy L. V., Koirala S., Sugiura Y. et al., 2003.Glial cells maintain synaptic structure and function and promote development of the neuromuscular junction in vivo // Neuron. Vol. 40 (3). P. 563–580.
  68. Rivlin P. K., St Clair R. M., Vilinsky I., Deitcher D. L., 2004. Morphology and molecular organization of the adult neuromuscular junction of Drosophila // J. Comp. Neurol. Vol. 468 (4). P. 596–613.
  69. Rosso S., Bollati F., Bisbal M. et al., 2004. LIMK1 regulates goldgi gynamics, traffic of goldgi-derived vesicles, and process extension in primary cultured neurons // Mol. Biol. Cell. Vol. 15. P. 3433–3449.
  70. Schmid A., Sigrist S. J., 2008. Analysis of neuromuscular junctions: histology and in vivo imaging // Methods Mol. Biol. Vol. 420. P. 239–251.
  71. Schratt G. M., Tuebing F., Nigh E. A. et al., 2006. A brain-specific microRNA regulates dendritic spine development // Nature. Vol. 439 (7074). P. 283–289.
  72. Scott R. W., Olson M. F., 2007. LIM kinase: function, regulation and association with human disease // J. Mol. Med. Vol. 85. P. 555–568.
  73. Siegel R. W., Hall J. C., 1979. Conditioned responses in courtship behavior of normal and mutant Drosophila // Proc. Natl. Acad. Sci. USA. Vol. 76 (1). P. 3430–3434.
  74. Soosairajah J., Maiti S., Waggan O. et al., 2005. Interplay between components of a novel LIM kinase-slingshot phosphotase complex regulates cofilin // EMBO. Vol. 24. P. 473–486.
  75. Stokin G. B., Goldstein L. S., 2006. Axonal transport and Alzheimer's disease // Annu. Rev. Biochem. Vol. 75. P. 607–627.
  76. Takahashi H., Funakoshi H., Nakamura T., 2003. LIM-kinase as a regulator of actin dynamics in spermatogenesis // Cytogenet Genome Res. Vol. 103 (3–4). P. 290–298.
  77. Tauber E., Eberl D. F., 2001. Song production in auditory mutants of Drosophila: the role of sensory feedback // J. Comp. Physiol. A. Vol. 187 (5). P. 341–348.
  78. Tomiyoshi G., Horita Y., Nishita M. et al., 2004. Caspase-mediated cleavage and activation of LIM-kinase 1 and its role in apoptotic membrane blebbing // Genes Cells. Vol. 9 (6). P. 591–600.
  79. Torroja L., Packard M., Gorczyca M. et al., 1999. The Drosophila beta-amyloid precursor protein homolog promotes synapse differentiation at the neuromuscular junction // J. Neurosci. Vol. 19 (18). P. 7793–7803.
  80. Tully T., 1996. Discovery of genes involved with learning and memory: An experimental synthesis of Hirschian and Benzerian perspectives // Proc. Natl. Acad. Sci. USA. Vol. 93 (24). P. 13 460–13 467.
  81. Tully T., Preat T., Boynton S. C., Del Vecchio M., 1994. Genetic dissection of consolidated memory in Drosophila // Cell. Vol. 79 (1). P. 35–47.
  82. Wang H., Hu Y., Tsien J. Z., 2006. Molecular and systems mechanisms of memory consolidation and storage // Prog. Neurobiol. Vol. 79 (3). P. 123–135.
  83. Wang J. Y., Frenzel K. E., Wen D., Falls D. L., 1998. Transmembrane Neuregulins Interact with LIM Kinase 1, a Cytoplasmic Protein Kinase Implicated in Development of Visuospatial Cognition // J. Biol. Chem. Vol. 273. P. 20 525–20 534.
  84. Yang E. J., Yoon J. H., Min do S., Chung K. C., 2004. LIM kinase 1 activates cAMP-responsive element-binding protein during the neuronal differentiation of immortalized hippocampal progenitor cells // J. Biol. Chem. Vol. 279. P. 8903–8910.
  85. Yang N., Higuchi O., Ohashi K. et al., 1998. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization // Nature. Vol. 393 (6687). P. 809–812.
  86. Yao J., Hennessey T., Flynt A. et al., 2010. MicroRNA-Related Cofilin Abnormality in Alzheimer’s Disease // PLoS ONE. Vol. 5 (12). P. 15 546–15 554.
  87. Yokoo T., Toyoshima H., Miura M. et al., 2003. p57kip2 regulate actin dynamics by binding and translocating LIM-kinase 1 to the nucleus // J. Biol. Chem. Vol. 278. P. 52 919–52 923.

Copyright (c) 2013 Kaminskaya A.N., Medvedeva A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies