The intron-containing transcript: an evolutionarily conserved characteristic of genes orthologous to nxf1 (Nuclear eXport Factor 1)

Cover Page

Cite item

Full Text

Abstract

Background. The function of nxf1 (Nuclear eXport Factor 1) gene is the nuclear-cytoplasmic transport of most mRNAs. A characteristic feature of nxf1 genes in animals belonging to different taxonomic groups is the existence of an alternative transcript with a homologous intron called a cassette intron. Materials and methods. The following databases were used: Genbank (http://www.ncbi.nlm.nih.gov/); Flybase (http://flybase.org/); UCSC Genome (http://genome.ucsc.edu). To build the secondary structures of nucleotide sequences we used the UNAFold v3.8 suite (http://mfold.rna.albany.edu/). Results. The existence of evolutionarily conserved sequences of intron 10–11 in nxf1 genes in vertebrates, and the presence of two poly(A) sequences of intron 5–6 in nxf1 genes of Drosophilidae, may be adaptive. The nxf1 cassette introns form characteristic secondary structures. Conclusion. The paper discusses the possible functional significance of the intron-retaining transcripts of nxf1 genes.

About the authors

Lyudmila Andreevna Mamon

Saint-Petersburg State University

Email: mamon@lm2010.spb.edu
Doctor of Biological Sciences, Professor. Deptartament of Genetics and Biotechnology

Sergey Fyedorovich Kliver

Saint-Petersburg State University

Email: mahajrod@gmail.com
student. Deptartament of Genetics and Biotechnology

Anna Olegovna Prosovskaya

Saint-Petersburg State University

Email: anna.o.nikulina@gmail.com
PhD student. Deptartament of Genetics and Biotechnology

Victoria Rinatovna Ginanova

Saint-Petersburg State University

Email: alianta-altera@mail.ru
student. Deptartament of Genetics and Biotechnology

Yelena Valeryevna Golubkova

Saint-Petersburg State University

Email: elena_golubkova@mail.ru
PhD. Deptartament of Genetics and Biotechnology

References

  1. Bachi A., Braun I. C., Rodrigues J. P. et al., 2000. The C-terminal domain of TAP interacts with the nuclear pore complex and promotes export of specific CTE-bearing RNA substrates // RNA. Vol. 6. P. 136–158.
  2. Bashirullah A., Cooperstock R. L., Lipshitz H. D., 1998. RNA localization in development // Annu. Rev.Biochem. Vol. 67. P. 335–394.
  3. Behm-Ansmant I., Gatfield D., Rehwinkel J. et al., 2007. A conserved role for cytoplasmic poly (A)-binding protein 1 (PABPC1) in nonsense-mediated mRNA // EMBO J. Vol. 26. P. 1–11.
  4. Besse F., Ephrussi A., 2008. Translational control of localized mRNAs: restricting protein synthesis in space and time // Nature Rev. Vol. 9. P. 971–980.
  5. Black D. L., Grabowski P. J., 2003. Alternative pre-mRNA splicing and neuronal function. // Prog. Mol. Subcell Biol. Vol. 31. P. 187–216.
  6. Blencowe B. J., 2000. Exonic splicing enhancers: mechanism of action, diversity and role in human disease // Trends Biochem. Sci. Vol. 25. P. 106–110.
  7. Boutz P. L., Stoilov P., Li Q. et al., 2007. A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons // Genes Develop. Vol. 21. P. 1636–1652.
  8. Braun I. C., Rohrbach E., Schmitt C., Izaurralde E., 1999. TAP binds to the constitutive transport element (CNE) through a novel RNA binding motif that is sufficient to promote CTE-dependent RNA export from the nucleus // EMBO J. Vol. 18. P. 1953–1965.
  9. Burge C. B., Tuschl T., Sharp P. A., 1999. Splicing of precursors of mRNAs by the spliceosomes. The RNA World / Eds. Gesteland R. F. et al. Cold Spring Harbor Lab. Press. Cold Spring Harbor., NY. P. 525–560.
  10. Cavalier-Smith T., 1991. Intron phylogeny: a new hypothesis // Trends Genet. Vol. 7. P. 145–148.
  11. Coyle J. H., Guzik B. W., Bor Y.-C. et al., 2003. Sam68 enhances the cytoplasmic utilization of intron-containing RNA and is functionally regulated by the nuclear kinase Sik/BRK // Mol. Cell Biol. Vol. 23. P. 92–103.
  12. Darnell J. E., Doolittle W. F., 1986. Speculations on the early course of evolution // Proc. natl. acad. sci. USA. Vol. 83. P. 1271–1275.
  13. David A., Dolan B. P., Hickman H. D. et al., 2012. Nuclear translation visualized by ribosome-bound nascent chain puromycylation // J. Cell. Biol. Vol. 197. P. 45–57.
  14. Dehay C., Kennedy H., 2009. Transcriptional regulation and alternative splicing make for better brains // Neuron. Vol. 62. P. 455–457.
  15. De Souza S. J., Long M., Schoenbach L. et al., 1996. Intron positions correlate with module boundaries in ancient proteins // Proc. natl. acad. sci. USA. Vol. 93. P. 14 632–14 636.
  16. Faustino N. A., Cooper T. A., 2003. Pre-mRNA splicing and human disease // Genes Dev. Vol. 17. P. 419–437.
  17. Fedorova L., Fedorov A., 2003. Introns in gene evolution // Genetica. Vol. 118. P. 123–131.
  18. Forrest S. T., Barringhaus K. G., Perlegas D., 2004. Intron retention generates a novel Id3 isoform that inhibits vascular lesion formation // J. Biol. Chem. Vol. 279. P. 32 897–32 903.
  19. Frints S. G., Jun L., Fryns J. P. et al., 2003. Inv (X) (p21.1; q22.1) in a man with mental retardation, short stature, general muscle wasting, and facial dysmorphism: clinical study and mutation analysis of the NXF5 gene // Amer J Med Genet. Part A. Vol. 119. P. 367–374.
  20. Galante P. A., Sakabe N. J., Kirschbaum-Slager N., de Souza S. J., 2004. Detection and evaluation of intron retention events in the human transcriptome // RNA. Vol. 10. P. 757–765.
  21. Gatfield D., Unterholzner L., Ciccarelli F. D. et al., 2003. Nonsense-mediated mRNA decay in Drosophila: at the intersection of the yeast and mammalian pathways // EMBO J. Vol. 22. P. 3960–3970.
  22. Gatfield D., Izaurralde E., 2004. Nonsense-mediated messenger RNA decay is initiated by endonucleolytic cleavage in Drosophila // Nature. Vol. 429. P. 575–578.
  23. Gilbert W., 1986. Origin of life: The RNA world // Nature. Vol. 319. P. 618.
  24. Gilbert W., 1978. Why genes in pieces? // Nature Vol. 271. P. 501.
  25. Gonzalez C. I., Ruiz-Echevarria M. J., Vasudevan S. et al., 2000. The yeast hnRNP-like protein Hrp1 /Nab4 marks a transcript for nonsense-mediated mRNA decay // Mol. Cell. Vol. 5. P. 489–499.
  26. Golubkova E. V., Mamon L. A., 2010. The Role of Dm NXF1 in Controlling Early Embryonic Mitoses in Drosophila melanogaster // Cell Division: Theory, Variants, and Degradation/Eds. Y. N. Golitsin and M. C. Krylov, Nova Science Publishers, Inc. P. 127–132.
  27. Golubkova E., Mamon L., Nikulina A. et al., 2012. The evolutionarily conserved family of nuclear export factor (NXF) in Drosophila melanogaster // Drosophila Melanogaster: Life Cycle, Genetics and Development / Ed. M. Spindler-Barth. Nova Science Publishers, Inc. P. 63–82.
  28. Graveley B. R., 2001. Alternative splicing: increasing diversity in the proteomic world // Trends Genet. Vol. 17. P. 100–107.
  29. Grillo L., Reitano S., Belfiore G. et al., 2010. Familial 1.1 Mb deletion in chromosome Xq22.1 associated with mental retardation and behavioural disorders in female patients // Europ. J. Med. Genet. Vol. 53. P. 113–116.
  30. Grosso A. R., Gomes A. Q., Barbosa-Morais N. L. et al., 2008. Tissue-specific splicing factor gene expression signatures // Nucleic Acids Res. Vol. 36. P. 4823–4832.
  31. Grüter P, Tabemero C., von Kobbe C. et al., 1998. TAP, human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus // Mol. Cell. Vol. 1. P. 649–659.
  32. Guzik B. W., Levesque L., Prasad S. et al., 2001. NTF1 (p15) is a crucial cellular cofactor in TAP-dependent export of intron-containing RNA in mammalian cells // Mol. Cell. Biol. Vol. 21. P. 2545–2554.
  33. Hansen K. D., Lareau L. F., Blanchette M. et al., 2009. Genome-wide identification of alternative splice forms down-regulated by nonsense-mediated mRNA decay in Drosophila // PLoS Genetics. Vol. 5. e1000525.
  34. Herold A., Klymenko T., Izaurralde E., 2001. NXF1/p15 heterodimers are essential for mRNA nuclear export in Drosophila // RNA. Vol. 7. P. 1768–1780.
  35. Herold A., Suyama M., Rodrigues J. P. et al., 2000. TAP (NXF1) Belongs to a Multigene Family of Putative RNA Export Factors with a Conserved Modular Architecture // Mol. Cell Biol. Vol. 20. P. 8996–9008.
  36. Herold A., Teixeira L., Izaurralde E., 2003. Genome-wide analysis of nuclear mRNA export pathways in Drosophila // EMBO J. Vol. 22. P. 2472–2483.
  37. Huang Y.-S., Carson J. H., Barbarese E., Richter J. D., 2003. Facilitation of dendritic mRNA transport by CPEB // Gene & Development. Vol. 17. P. 638–653.
  38. Ivankova N., Tretyakova I., Lyozin G. et al., 2010. Alternative transcripts expressed by small bristles, the Drosophila melanogaster nxf1 gene // Gene. Vol. 458. P. 11–19.
  39. Jun L., Frints S., Duhamel H. et al., 2001. NXF5, a novel member of the nuclear RNA export factor family, is lost in a male patient with a syndromic form of mental retardation // Curr. Biol. Vol. 11. P. 1381–1391.
  40. Kan Z., States D., Gish W., 2002. Selecting for functional alternative splices in ESTs // Genome Res. Vol. 12. P. 1837–1845.
  41. Kosik K. S., Krichevsky A. M., 2002. The message and the messenger: delivering RNA in neurons // Sci. STKE. Vol. 126. P. 1–4.
  42. Kozak M., 2005. Regulation of translation via mRNA structure in prokaryotes and eukaryotes // Gene. Vol. 361. P. 13–37.
  43. Krichevsky A. M., Kosik K. S., 2001. Neuronal RNA granules: a link between RNA localization and stimulation-dependent translation // Neuron. Vol. 32. P. 683–696.
  44. Lareau L. F., Green R. E., Bhatnagar R. S., Brenner S. E., 2004. The evolving roles of alternative splicing // Curr. Opin. Struct. Biol. Vol. 14. P. 273–282.
  45. Li Y., Bor Y.-C., Misawa Y. et al., 2006. An intron with a constitutive transport element is retained in a Tap messenger RNA // Nature. Vol. 443. P. 234–237.
  46. Lipshitz H. D., Smibert C. A., 2000. Mechanisms of RNA localization and translational regulation // Curr. Opin. Genet. Devel. Vol. 10. P. 476–488.
  47. Melhuish T. A., Wotton D., 2006. The Tgif2 gene contains a retained intron within the coding sequence. BMC Mol. Biol. Vol. 7:2.
  48. Maniatis T., Tasic B., 2002. Alternative pre-mRNA splicing and proteome expantion in metazoans // Nature. Vol. 418. P. 236–243.
  49. Martin K. C., Ephrussi A., 2009. mRNA localization: gene expression in the spatial dimension // Cell. Vol. 136. P. 719–730.
  50. Matlin A. J., Clark F., Smith C. W., 2005. Understanding alternative splicing: towards a cellular code // Nat. Rev. Mol. Cell. Biol. Vol. 6. P. 386–398.
  51. Mattick J. S., 1994. Introns: evolution and function // Curr. Opin. Genet. Dev. Vol. 4. P. 823–831.
  52. Mattick J. S., 2001. Non-coding RNAs: the architects of eukaryotic complexity // EMBO reports. Vol. 21. P. 986–991.
  53. Mattick J. S., Gagen M. J., 2001. The evolution of controlled multitasked gene networks: the role of introns and other noncoding RNAs in development of complex organisms // Mol. Biol. Evol. Vol. 18. P. 1611–1630.
  54. Mattick J. S., 2010. RNA as the substrate for epigenome-environment interactions // Bioessays. Vol. 32. P. 548–552.
  55. Meignin C., Davis I., 2010. Transmitting the message: intracellular mRNA localization // Curr. Opin. Cell Biol. Vol. 22. P. 112–119.
  56. Michael I. P., Kurlender L., Memari N. et al., 2005. Intron retention: a common splicing event within the human kallikrein gene family // Clinical Chemistry. Vol. 51. P. 506–515.
  57. Mollet I. G., Ben-Dov C., Felicio-Silva D. et al., 2010. Inconstrained mining of transcript data reveals increased alternative splicing complexity in the human transcriptome // Nucl. Acid Res. Vol. 38. P.1–15.
  58. Nilsen T. W., Graveley B. R., 2010. Expansion of the eukaryotic proteome by alternative splicing // Nature. Vol. 463. P. 457–463.
  59. Nott A., Meislin S. H., Moore M. J., 2003. A quantitative analysis of intron effects on mammalian gene expression // RNA. Vol. 9. P. 607–617.
  60. Patthy L., 1999. Genome evolution and the evolution of exon-shuffling — a review // Gene. Vol. 238. P. 103–114.
  61. Pesole G., Mignone F., Gissi C. et al., 2001. Structural and functional features of eukaryotic mRNA untranslated regions // Gene. Vol. 276. P. 73–81.
  62. Reznik B., Lykke-Andersen J., 2010. Regulated and quality-control mRNA turnover pathways in eukaryotes // Biochem. Soc. Transact. Vol. 38. P. 1506–1510.
  63. Richter J. D., Lorenz L. J., 2002. Selective translation of mRNAs at synapses // Curr. Opin. Neurobiol. Vol. 12. P. 300–304.
  64. Sasaki M., Takeda E., Takano K., 2005. Molecular cloning and functional characterization of mouse Nxf family gene products // Genomics. Vol. 85. P. 641– 653.
  65. Stamm S., Ben-Ari S., Rafalska I. et al., 2005. Function of alternative splicing // Gene Vol. 344. P. 1–20.
  66. Wagner E., Lykke-Andersen J., 2002. mRNA surveillance: the perfect persist // J. Cell Sci. Vol. 115. P. 3033–3038.
  67. Wan Y., Kertesz M., Spitale R. C. et al., 2011. Understanding the transcriptome through RNA structure // Natural Rev. Genetics. Vol. 12. P. 641–655.
  68. White-Cooper H., 2010. Molecular mechanisms of gene regulation during Drosophila stermatogenesis // Reproduction. Vol. 139. P. 11–21.
  69. Wilusz C. J., Wilusz J., 2004. Bringing the role of mRNA decay in the control of gene expression into focus // Trends Genet. Vol. 20. P. 491–497.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2013 Mamon L.A., Kliver S.F., Prosovskaya A.O., Ginanova V.R., Golubkova Y.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».