Адаптивная и прогрессивная эволюциярастительно-микробного симбиоза

Обложка

Цитировать

Полный текст

Аннотация

У N2-фиксирующих симбионтов бобовых растений (ризобий) эволюция полезных для хозяина(«альтруистических») признаков происходит в популяциях, колонизирующих субклеточные компартменты клубеньков (инфекционные нити, симбиосомы). Эти компартменты возникают в результате коэволюции партнеров, которая связана с усложнением трофических и регуляторных взаимодействий, определяющих экологическую эффективность симбиоза. Их анализ позволяет изучать соотношение механизмов адаптивной и прогрессивной эволюции симбиоза, которое остается неясным для свободно-живущих организмов

Об авторах

Николай Александрович Проворов

Государственное научное учреждение Всероссийский научно-исследовательский институт сельскохозяйственной микробиологии Россельхозакадемии

Email: provorov@newmail.ru
заместитель директора по научной работе, доктор биологических наук

Николай Иванович Воробьев

Государственное научное учреждение Всероссийский научно-исследовательский институт сельскохозяйственной микробиологии Россельхозакадемии

Email: vorobyov@arriam.spb.ru
кандидат технических наук, руководитель группы биоинформатики и математического моделирования

Список литературы

  1. Берг Л. С., 1977. Труды по теории эволюции. Л.: Наука. 438 c.
  2. Воробьев Н. И., Проворов Н. А., 2010. Моделирование эволюции бобово-ризобиального симбиоза на повышение функциональной интегрированности партнеров и экологической эффективности их взаимодействия // Экол. генетика. Т. 8. № 3. С. 16–26.
  3. Воробьева Е. И., 2006. Проблема целостности организма и ее перспектива // Изв. РАН. Сер. Биол. № 5. С. 530–540.
  4. Иорданский Н. Н., 2010. Чарлз Дарвин и проблема эволюционного прогресса // Журн. общей биологии. Т. 71. № 6. С. 488–496.
  5. Майр Э., 1973. Популяции, виды и эволюция. М.: Мир. 460c.
  6. Назаров В. И., 2005. Эволюция не по Дарвину. М.: КомКнига. 520 с.
  7. Попов И. Ю., 2005. Ортогенез против дарвинизма. СПб.: Изд-во СПбГУ. 207 с.
  8. Проворов Н. А., 1992. Взаимосвязь между таксономией бобовых и специфичностью их взаимодействия с клубеньковыми бактериями // Ботанич. журн. Т. 77. № 8. С. 21–32.
  9. Проворов Н. А., 2005. Молекулярные основы симбиогенной эволюции: от свободноживущих бактерий к органеллам // Журн. общей биологии. Т. 66. № 5. C. 371–388.
  10. Проворов Н. А., Воробьев Н. И., 2010. Роль горизонтального переноса генов в эволюции клубеньковых бактерий, направляемой растением-хозяином //Успехи соврем. биол. Т. 130. № 4. С. 336–345.
  11. Проворов Н. А., Воробьев Н. И., 2012 а. Коэволюция партнеров и целостность симбиотических систем // Журн. общей биологии. Т. 73. № 1. С. 21–36.
  12. Проворов Н. А., Воробьев Н. И., 2012b. Генетические основы эволюции растительно-микробного симбиоза. Под ред. И. А. Тихоновича. СПб.: Информ-Навигатор. 400 с.
  13. Проворов Н. А., Тихонович И. А., 2003. Эколого-генетические принципы селекции растений на повышение эффективности взаимодействия с микроорганизмами // С.-х. биология. № 3. С. 11–25.
  14. Тимофеев-Ресовский Н. В., Воронцов Н. Н., Яблоков А. В., 1977. Краткий очерк теории эволюции. 2-е издание. М.: Наука. 300 с.
  15. Тихонович И. А., Проворов Н. А., 2012. Развитие подходов симбиогенетики для изучения изменчивости и наследственности надвидовых систем // Генетика. Т. 48. № 4. С. 437–450.
  16. Цыганова А. В., Цыганов В. Е., Борисов А. Ю. и др., 2009. Сравнительный цитохимический анализ распределения перекиси водорода в клубеньках мутанта гороха SGEFix–-1 (sym40) и исходной линии SGE // Экол. генетика. Т. 7. С. 3–9.
  17. Шмальгаузен И. И., 1982. Организм как целое в индивидуальном и историческом развитии. М.: Наука. 383 с.
  18. Шмальгаузен И. И., 1983. Пути и закономерности эволюционного процесса. М.: Наука. 359 с.
  19. Яковлев Г. П., 1991. Бобовые земного шара. Л.: Наука. 192 с.
  20. Borisov A., Rozov S. M., Tsyganov V. E. et al., 1997. Sequential functioning of Sym-13 and Sym-31, two genes affecting symbiosome development in root nodules of pea (Pisum sativum L.) // Mol. Gen. Genet. Vol. 254. P. 592–598.
  21. Brewin N. J., 1991. Development of the legume root nodule // Ann. Rev. Cell Biol. Vol. 7. P. 191–226.
  22. Brewin N. J., 2004. Plant cell wall remodeling in the Rhizobium-legume symbiosis // Crit. Rev. Plant Sci.Vol. 23. P. 1–24.
  23. Bronstein J. L., 2009. The evolution of facilitation and mutualism // J. Ecol.Vol. 97. P. 1160–1170.
  24. Bryan J. A., Berlyn G. P., Gordon J. C., 1996. Towards a new concept of the evolution of symbiotic nitrogen fixation in the Leguminosae // Plant and Soil. Vol. 186. P. 151–159.
  25. Cheng J., Sibley C. D., Zaheer R., Finan T. M., 2007. A Sinorhizobium minE mutant has an altered morphology and exhibits defects in legume symbiosis // Microbiology. Vol. 153. P. 375–387.
  26. de Bary A., 1879. Die Erscheinung der Symbiose. Strassburg: Verlag Von Karl J Trübner. 30 s.
  27. Denison R. F., Kiers E. T., 2004a. Lifestyle alternatives for rhizobia: mutualism, parasitism and foregoing symbiosis // FEMS Microbiol. Lett. Vol. 237. P. 187–193.
  28. Denison R. F., Kiers E. T., 2004b. Why are most rhizobia beneficial to their plant hosts, rather than parasitic? // Microbes and Infection. Vol. 6. P. 1235–1239.
  29. Dodd I. C., Zinovkina N. Y., Safronova V. I., Belimov A. A., 2010. Rhizobacterial mediation of plant hormone status // Ann. Appl. Biol. Vol. 157. P. 361–379.
  30. Douglas A. E., 1994. Symbiotic interactions. Oxford. Univ. Press: Oxford, New York, Toronto. 190 p.
  31. Downie J. A., Young J. P. W., 2001. The ABC of symbiosis // Nature.Vol. 412.P. 597–598.
  32. Doyle J. J., Chappill J. A., Bailey C. D., Kajita T., 2000. Towards a comprehensive phylogeny of legumes: evidence from rbcL sequences and non-molecular data //Advances in legume systematics / Eds. P. S. Herendeen, A. Bruneau. Roy. Botan. Gardens: Key. P. 1–20.
  33. Filipcenko J., 1927. Variabilität und Variation, Berlin, Bornträger.
  34. Franche C., Lindstrom K., Elmerich C., 2009. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants // Plant and Soil. Vol. 321. P. 35–59.
  35. Frank S. A., 1994. Genetics of mutualism: the evolution of altruism between species // J. Theor. Biol. Vol. 170. P. 393–400.
  36. Heinrich K., Ryder M. H., Murphy P. J., 2001. Early production of rhizopine in nodules induced by Sinorhizobium meliloti strain L5–30 // Can. J. Microbiol. Vol. 47.P. 165–171.
  37. Janzen D. H., 1980. When is it coevolution? // Evolution. Vol. 34.P. 611–612.
  38. Kalevitch M. V., Kefeli V. I., Borsari B. et al., 2004. Final version chemical signaling during organisms’ growth and development // J. Cell. Molec. Biol. Vol. 3. P. 95–102.
  39. Karunakaran R., Haag A. F., East A. K. et al., 2010.BacA is essential for bacteroid development in nodules of Galegoid, but not Phaseoloid legumes // J. Bacteriol. Vol. 192. P. 2920–2928.
  40. Krishnan H. B., Chronis D., 2008. Functional nodFE genes are present in Sinorhizobium sp. strain MUS10, a symbiont of the tropical legume Sesbania rostrata //Appl. Environ. Microbiol. Vol. 74.P. 2921–2923.
  41. Maillet F., Poinsot V., Andre O. et al., 2011. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza // Nature. Vol. 469. P. 58–65.
  42. Margulis L., 2010. Symbiogenesis. A new principle of evolution rediscovery of Boris Mikhaylovich Kozo-Polyansky (1890–1957) // Charles Darwin and modern biology / Ed. E. I. Kolchinsky. Nestor-Historia: St.-Petersburg, Russia. P. 34–48.
  43. Margulis L., Sagan D., 2002. Acquiring genomes. A theory of the origins of species. Basic Books, New York.
  44. Markmann K., Parniske M., 2008. Evolution of root endosymbiosis with bacteria: how novel are nodules? //Trends in Plant Sci. Vol. 14. P. 77–86.
  45. Mergaert P., Uchiumi T., Alunni B. et al., 2006. Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium–legume symbiosis // Proc. Natl. Acad. Sci. USA. Vol. 103. P. 5230–5235.
  46. Michod R. D., Roze D., 1997. Transitions in individuality // Proc. Roy. Soc. Lond. B. Vol. 264. P. 953–857.
  47. Oono R., Denison R. F., Kiers E. T., 2009. Controlling the reproductive fate of rhizobia: how universal are legume sanctions? // New Phytol. Vol. 183. P. 967–979.
  48. Parniske M., 2008. Arbuscular mycorrhiza: the mother of plant root endosymbioses // Nature. Rev. Microbiol.Vol. 6. P. 763–775.
  49. Provorov N. A., 1998. Coevolution of rhizobia with legumes: facts and hypotheses // Symbiosis. Vol. 24. P. 337–367.
  50. Provorov N. A., Vorobyov N. I., 2000. Population genetics of rhizobia: construction and analysis of an “infection and release” model // J. Theor. Biol. Vol. 205. P. 105–119.
  51. Provorov N. A., Vorobyov N. I., 2006. Interplay of Darwinian and frequency-dependent selection in the host-associated microbial populations // Theor. Popul. Biol.Vol. 70. P. 262–272.
  52. Provorov N. A., Vorobyov N. I., 2008. Equilibrium between the “genuine mutualists” and “symbiotic cheaters” in the bacterial population co-evolving with plants in a facultative symbiosis // Theor. Popul. Biol.Vol. 74. P. 345–355.
  53. Provorov N. A., Vorobyov N. I., 2009. Host plant as on organizer of microbial evolution in the beneficial symbioses // Phytochem. Rev. Vol. 8. P. 519–534.
  54. Provorov N. A., Vorobyov N. I., 2010a. Evolutionary genetics of plant-microbe symbioses. Ed. by I. A. Tikhonovich. NOVA Sci. Publ.: New York. 290 p.
  55. Provorov N. A., Vorobyov N. I., 2010b. Simulation of evolution implemented in the mutualistic symbioses towards enhancing their ecological efficiency, functional integrity and genotypic specificity // Theor. Popul. Biol. Vol. 78. P. 259–269.
  56. Provorov N. A., Vorobyov N. I., 2012. Reconstruction of the adaptively advantages macro-evolutionary events in the mutualistic symbioses // Evolutionary Biology: Mechanisms and Trends / Ed. P. Pontarotti. Springer: Heidelberg, New York, Dordrecht, London. P. 169–188.
  57. Rodriguez R. J., Freeman D. C., McArthur E. D. et al., 2009. Symbiotic regulation of plant growth, development and reproduction // Commun. Integrat. Biol. Vol. 2. P. 141–143.
  58. Seckbach J., 2002. Symbiosis: mechanisms and model systems. Kluwer Acad. Publ.: Dordrecht, Boston, London. 800 p.
  59. Shtark O. Y., Borisov A. Y., Zhukov V. A. et al., 2010. Intimate associations of beneficial soil microbes with host plants // Soil Microbiology and Sustainable Crop Production / Eds. R. Dixon, E. Tilston. Springer: Berlin, Heidelberg. P. 119–196.
  60. Sprent J. I., 2001. Nodulation in legumes. Cromwell Press Ltd: Kew. 110 p.
  61. Sprent J. I., 2007. Evolving ideas of legume evolution and diversity: a taxonomic perspective on the ocurrence of nodulation // New Phytol. Vol. 174. P. 11–25.
  62. Stougaard J., 2001. Genetics and genomics of root symbiosis // Curr. Opin. Plant Biol. Vol. 4. P. 328–335.
  63. Tikhonovich I. A., Provorov N. A., 2009. From plant-microbe interactions to symbiogenetics: a universal paradigm for the inter-species genetic integration //Ann. Appl. Biol. Vol. 154. P. 341–350.
  64. Tikhonovich I. A., Provorov N. A., 2011. Microbiology is the basis of sustainable agriculture: an opinion //Ann. Appl. Biol. Vol. 159. P. 155–168.
  65. Timmers A. C. S., Soupene E., Auriac M. C. et al., 2000. Saprophytic intracellular rhizobia in alfalfa nodules //Mol. Plant-Microbe Interact. Vol. 13. P. 1204–1213.
  66. Tort L., Balasch J. C., Mackenzie S., 2003. Fish immune system. The crossroads between innate and adaptive responses // Immunologia. Vol. 22. P. 277–286.
  67. Tsyganov V. E., Voroshilova V. A., Herrera-Cervera J. A. et al., 2003. Developmental down-regulation of rhizobial genes as a function of symbiosome differentiation in symbiotic root nodules of Pisum sativum L. //New Phytol. Vol. 159. P. 521–530.
  68. Udvardi M. K., Kahn M. L., 1992. Evolution of the (Brady) Rhizobium-legume symbiosis: why do bacteroids fix nitrogen? // Symbiosis. Vol. 14. P. 87–101.
  69. Van de Velde W., Zehirov G., Szatmari A. et al., 2010. Plant peptides govern terminal differentiation of bacteria in symbiosis // Science. Vol. 327. P. 1122–1126.
  70. Van Ham R. C., Kamerbeek J., Palacios C. et al., 2003. Reductive genome evolution in Buchnera aphidicola //Proc. Natl. Acad. Sci. USA. Vol. 100. P. 581–586.
  71. Veening J. W., Stewart E. J., Berngruber T. W. et al., 2008. Bet-hedging and epigenetic inheritance in bacterial cell development // Proc. Natl. Acad. Sci. USA. Vol. 105. P. 4393–4398.
  72. Wang D., Yang S., Tang F., Zhu H., 2012. Symbiosis specificity in the legume–rhizobial mutualism // Cell. Microbiol. Vol. 14. P. 334–342.
  73. Young J. P. W., Crossman L. C., Johnston A. W. B. et al., 2006. The genome of Rhizobium leguminosarum has recognizable core and accessory components //Genome Biol. Vol. 7. P. 34.
  74. Zilber-Rosenberg I., Rosenberg E., 2008. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution // FEMS Microbiol. Rev. Vol. 32. P. 723–735.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Проворов Н.А., Воробьев Н.И., 2013

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».