Cytogenetic effects in the needles intercalar meristem of Japanese red pine in the remote period after the Fukushima NPP accident

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Background. The study of the long-term effects of chronic radiation exposure on plants and animals, which are still the subject of scientific discussion, is necessary to understand the consequences of radiation accidents. After the Fukushima nuclear power plant accident, some of the young pines and spruces showed an increased frequency of apical dominance cancelling. The most probable cause of the observed morphoses is associated with damage to the apical meristem of coniferous plants by radiation in the first year of the accident, when they received the highest absorbed doses. If this hypothesis is true, then even 8 years after the accident it will be possible with high degree of probability to detect an increased level of cytogenetic abnormalities in the intercalary meristem of needles of plants from these populations.

The aim of this work was to verify this hypothesis.

Materials and methods. Five populations of Japanese red pine from territories contaminated with radionuclides as a result of the accident at the Fukushima nuclear power plant were investigated. The frequency and spectrum of cytogenetic abnormalities in the intercalary meristem of needles were determined by the ana-telophase analysis.

Results. The frequency of aberrant cells in the needles intercalary meristem of Japanese red pine from the contaminated with radionuclides territory statistically significantly exceeds the control level in all impact sites and increases along with the dose rate. Although there is no correlation between the frequency of cytogenetic abnormalities in needles and the presence of cancellation of apical dominance in plants, all pine populations from radioactively contaminated territories are characterized by an increased frequency of both cytogenetic abnormalities and morphoses associated with the cancellation of apical dominance.

Conclusion. Radiation damage to the apical meristems of conifers in the first year of the accident, when they received the highest absorbed doses, is the most likely cause of the increased frequency of cancellation of apical dominance in the studied populations of Japanese red pine from the zone affected by the accident at the Fukushima nuclear power plant.

About the authors

Denis V. Vasiliev

Russian Institute of Radiology and Agroecology

Author for correspondence.
Email: treworqwert@mail.ru

Cand. Sci. (Biol.), Senior Scientific Researcher, Laboratorу No. 6

Russian Federation, Obninsk

Stanislav A. Geraskin

Russian Institute of Radiology and Agroecology

Email: stgeraskin@gmail.com

Dr. Sci. (Biol.), Head of Laboratory No. 6

Russian Federation, Obninsk

Vasyl I. Yoschenko

Institute of Environmental Radioactivity of Fukushima University

Email: r705@ipc.fukushima-u.ac.jp

Project Professor, PhD

Japan, Fukushima

Maria A. Lychenkova

Russian Institute of Radiology and Agroecology

Email: lychenkovamariya@gmail.com

ml. scientific al. Laboratory No. 6

Russian Federation, Obninsk

Kenji Nanba

Institute of Environmental Radioactivity of Fukushima University

Email: nanba@sss.fukushima-u.ac.jp

PhD in A.S., Professor, Faculty of Symbiotic Systems Science

Japan, Fukushima

References

  1. Annual report 2011. World Trade Organization; 2011. 158 р. Available from: https://www.wto-ilibrary.org/the-wto/annual-report-2011_ 52320670-en.
  2. Garnier-Laplace J, Beaugelin-Seiller K, Della-Vedova C, et al. Radiological dose reconstruction for birds reconciles outcomes of Fukushima with knowledge of dose-effect relationships. Sci Rep. 2015;5:16594. https://doi.org/10.1038/srep16594.
  3. Horiguchi T, Yoshii H, Mizuno S, et al. Decline in intertidal biota after the 2011 Great East Japan earthquake and tsunami and the Fukushima nuclear disaster: field observations. Sci Rep. 2016;6:20416. https://doi.org/10.1038/srep20416.
  4. Okano T, Ishiniwa H, Onuma M, et al. Effects of environmental radiation on testes and spermatogenesis in wild large Japanese field mice (Apodemus speciosus) from Fukushima. Sci Rep. 2016;6:23601. https://doi.org/10.1038/srep23601.
  5. Otaki JM. Fukushima’s lessons from the blue butterfly: a risk assessment of the human living environment in the post-Fukushima era. Integr Environ Assess Manag. 2016;12(4):667-672. https://doi.org/10.1002/ieam.1828.
  6. Козубов Г.М., Таскаев А.И. Радиобиологические и радиоэкологические исследования древесных растений (по материалам 7-летних исследований в районене аварии на Чернобыльской АЭС). – СПб.: Наука, 1994. – 252 с. [Kozubov GM, Taskaev AI. Radiobiologicheskiye i radioekologicheskiye issledovaniya drevesnykh rasteniy (po materialam 7-letnikh issledovaniy v rayonene avarii na Chernobyl’skoy AES). Saint Petersburg: Nauka; 1994. 252 p. (In Russ.)]
  7. Гераськин С.А., Фесенко C.B., Алексахин P.M. Воздействие аварийного выброса Чернобыльской АЭС на биоту // Радиационная биология. Радиоэкология. – 2006. – Т. 46. – № 2. – С. 178–188. [Geras’kin SA, Fesenko SV, Aleksakhin RM. The effects of non-human species irradiation after the CHNPP accident. Radiation biology. Radioecology. 2006;46(2):178-188. (In Russ.)]
  8. Watanabe Y, Ichikawa S, Kubota M, et al. Morphological defects in native Japanese fir trees around the Fukushima Dai-Ichi nuclear power plant. Sci Rep. 2015;5:13232. https://doi.org/10.1038/srep13232.
  9. Yoschenko V, Nanba K, Yoshida S, et al. Morphological abnormalities in Japanese red pine (Pinus densiflora) at the territories contaminated as a result of the accident at Fukushima Dai-Ichi Nuclear power plant. J Environ Radioact. 2016;165:60-67. https://doi.org/10.1016/j.jenvrad.2016.09.006.
  10. Гераськин С.А., Сарапульцева Е.И., ред. Биологический контроль окружающей среды: генетический мониторинг. – М.: Академия, 2010. – 206 с. [Geras’kin SA, Sarapultseva EI, eds. Biologicheskiy kontrol’ okruzhayushchey sredy: geneticheskiy monitoring. Moscow: Academy; 2010. 206 p. (In Russ.)]
  11. Geras’kin S, Volkova P, Vasiliyev D, et al. Scots pine as a promising indicator organism for biomonitoring of the polluted environment: a case study on chronically irradiated populations. Mutat Res. 2019;842:3-13. https://doi.org/10.1016/j.mrgentox.2018.12.011.
  12. ICRP Publication 108. Environmental protection: the concept and use of reference animals and plants. Ann ICRP. 2009:38(4-6):1-242.
  13. Kalaev VN, Butorina AK. Cytogenetic effect of radiation in seed of oak (Quercus robur L.) trees growing on sites contaminated by Сhernobyl fallout. Silvae Genetica. 2006;55(1-6):93-101. https://doi.org/10.1515/sg-2006-0014.
  14. Geras’kin SA, Kim JK, Oudalova AA, et al. Bio-monitoring the genotoxicity of populations of Scots pine in the vicinity of a radioactive waste storage facility. Mutat Res. 2005;583(1):55-66. https://doi.org/10.1016/j.mrgentox.2005.02. 003.
  15. Паушева З.П. Практикум по цитологии растений. – М.: Агропромиздат, 1988. – 272 с. [Pausheva ZP. Workshop on plant cytology. Moscow: Agropromizdat; 1988. 272 p. (In Russ.)]
  16. Бочков Н.П., Демин Ю.С., Лучник Н.В. Классификация и методы учета хромосомных аберраций в соматических клетках // Генетика. – 1972. – Т. 8. – № 5. – С. 133–141. [Bochkov NP, Demin YuS, Luchnik NV. Classification and methods of accounting for chromosomal aberrations in somatic cells. Genetics. 1972;8(5):133-141. (In Russ.)]
  17. Гераськин С.А., Фесенко С.В., Черняева Л.Г., Санжарова Н.И. Статистические методы анализа эмпирических распределений коэффициентов накопления радионуклидов растениями // Сельскохозяйственная биология. – 1994. – T. 29. – № 1. – С. 13–37. [Geras’kin SA, Fesenko SV, Chernyaeva LG, Sanzharova NI. Statistical methods for the analysis of empirical distributions of the coefficients of accumulation of radionuclides by plants. Agricultural Biology. 1994;29(1):13-37. (In Russ.)]
  18. Дикарев В.Г., Гераськин С.А., Дикарев А.В., Дикарева Н.С. Сравнительный анализ эффективности использования интеркалярных и апикальных меристем ячменя для биоиндикации генотоксического действия свинца // Экологическая генетика. – 2018. – Т. 16. – № 3. – С. 37–46. [Dikarev VG, Geras’kin SA, Dikarev AV, Dikareva NS. The comparative analysis of effectiveness of barley intercalar and apical meristems applying for bioindication of lead influence genotoxicity. Ecological genetics. 2018;16(3): 37-46. (In Russ.)]. https://doi.org/10.17816/ecogen16337-46.
  19. Гераськин С.А., Зимина Л.М., Дикарев В.Г., и др. Сравнительный анализ методами биоиндикации антропогенного загрязнения района расположения предприятия по переработке и хранению радиоактивных отходов и 30-км зоны ЧАЭС // Экология. – 2000. – № 4. – С. 300–303. [Geras’kin SA, Zimina LM, Dikarev VG, et al. Comparative analysis by methods of bioindication of anthropogenic pollution of the area where the enterprise for the processing and storage of radioactive waste and the 30-km zone of the Chernobyl nuclear power plant. Rus J Ecology. 2000;(4):300-303. (In Russ.)]. https://doi.org/10.1007/bf02764060.
  20. Фогель Ф., Мотульски А. Генетика человека. Т. 2. – М.: Мир, 1990. – 378 с. [Fogel F, Motul’ski A. Human genetics. Vol. 2. Moscow: Mir; 1990. 378 p. (In Russ.)]
  21. Streffer C, Bolt H, Follesdal D, et al. Low dose exposures in the environment. Dose-effect relations and risk evaluation. Berlin Heidelberg, Springer-Verlag; 2004. 476 p. https://doi.org/10.1007/978-3-662-08422-9_9.
  22. Гудков И.Н. Основы общей и сельскохозяйственной радиобиологии. – Киев: УСХА, 1991. – 328 с. [Gudkov IN. Fundamentals of general and agricultural radiobiology. Kiev: Publishing house of USKHA; 1991. 328 p. (In Russ.)]

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure: 5. The relationship between the frequency of cytogenetic effects and disorders of apical dominance. On the abscissa axis of the tree group: with impaired apical dominance (FA, AA, SA, TA, OA); recovered (FR, AR, SR, TR, OR); without morphoses (FN, AN, SN, TN, ON)

Download (44KB)
3. Figure: 1. Scheme of the study area. - sampling locations. Symbols in the text

Download (250KB)
4. Figure: 2. Anomalies of mitosis in the intercalary meristem of red Japanese pine needles: a - single fragment; b - double fragment; c - lagging behind; d - single bridge; e - double bridge; f - multipolar mitosis

Download (320KB)
5. Figure: 3. Frequency of cytogenetic disturbances in populations of red Japanese pine (this study) and populations of Scots pine from the 30-km zone of the Chernobyl nuclear power plant [19] and the Bryansk region [14]. The difference from the control is statistically significant: * p <0.05

Download (68KB)
6. Figure: 4. The spectrum of cytogenetic disturbances in the populations of red Japanese pine (this study) and Scots pine from the 30-km zone of the Chernobyl nuclear power plant [19] and the Bryansk region [11]. f ', m' - chromatid (single) fragments and bridges; f '', m '' - chromosomal (double) fragments and bridges; g - lagging chromosomes; mp - multipolar mitoses. The difference from the control is statistically significant: * p <0.05

Download (90KB)
7. Figure: 5. The relationship between the frequency of cytogenetic effects and disorders of apical dominance. On the abscissa axis of the tree group: with impaired apical dominance (FA, AA, SA, TA, OA); recovered (FR, AR, SR, TR, OR); without morphoses (FN, AN, SN, TN, ON)

Download (44KB)

Copyright (c) 2021 Vasiliev D.V., Geras’kin S.A., Ioshchenko V., Lychenkova M., Kenji N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies