Prokaryotic communities of technozems of the spoil heaps of Kursk magnetic anomaly

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Background. Spoil heaps chronosequences are convenient models to analyze the succession of microbiome during restoration of anthropogenically disturbed landscapes. The investigation of the heavy metal content in lands with mining activity, can be used as an indicator of ecosystem recovery.

Materials and methods. Objects were technozems of 1-year, 25- and 50-year-old embryonic soils, and control soil under forest. Quantitative polymerase chain reaction (qPCR) and NGS-sequencing of V4 region of 16S rRNA gene were applied. Results. During the soil-forming process, an increase organic carbon and nitrogen, as well as a gradual increase archaeal 16S rRNA gene copies and in the number of Bradyrhizobiaceae, Blastocatellaceae, Xantobacteriaceae. Although we found a number of taxa that increased during soil-forming process (Thaumarchaeota, Bradyrhizobiaceae, Blastocatellaceae, Xantobacteriaceae), technozems of different ages had a similar structure and diversity of prokaryotic communities, differing from a nature soil. Biodiversity analysis revealed that technozems generally had a similar structure and diversity of prokaryotic communities, significantly differing from the mature soil a specific clusterization of microbiomes. The HM contents and bacterial abundances remained at the same level in chronosequence.

Conclusions. The 50 years of soil development on overburden spoil heaps is not enough for the recovery from HM contamination and restoration of soil ecosystem functioning.

About the authors

Ekaterina A. Ivanova

V.V. Dokuchaev Soil Science Institute; All-Russian Research Institute for Agricultural Microbiology; Agrophysical Research Institute

Author for correspondence.
Email: ektrnivanova@gmail.com
ORCID iD: 0000-0003-1589-9875

PhD of Biology, Senior Researcher of the Department of Biology and Biochemistry of Soils; Research Scientist of the Laboratory of Microbiological Monitoring and Bioremediation of Soils; Research Scientist of the Department of the Modelling of Adaptive Agrotechologies

Russian Federation, Moscow; St. Petersburg, Pushkin; St. Petersburg

Elizaveta V. Pershina

All-Russian Research Institute for Agricultural Microbiology

Email: microbioliza@gmail.com
ORCID iD: 0000-0003-4472-1013

PhD of Biology, Senior Researcher of the Laboratory of Microbiological Monitoring and Bioremediation of Soils

Russian Federation, Saint Petersburg, Pushkin

Dina V. Karpova

M.V. Lomonosov Moscow State University

Email: karpovad@mail.ru
ORCID iD: 0000-0002-9892-9621

Dr. Sc. of Agricultural Sciences, of the Department of Soil Erosion and Consernation of the Faculty of Soil Science

Russian Federation, Moscow

Azida K. Tkhakakhova

V.V. Dokuchaev Soil Science Institute

Email: azida271183@mail.ru
ORCID iD: 0000-0001-9375-2364

PhD of Biology, Senior Researcher of the Department of Biology and Biochemistry of Soils

Russian Federation, Moscow

Alyona D. Zhelezova

V.V. Dokuchaev Soil Science Institute

Email: alferrum@mail.ru
ORCID iD: 0000-0002-2086-299X

PhD of Biology, Senior Researcher of the Department of Biology and Biochemistry of Soils

Russian Federation, Moscow

Olga B. Rogova

V.V. Dokuchaev Soil Science Institute

Email: olga_rogova@inbox.ru
ORCID iD: 0000-0003-2908-0828

PhD of Biology, Senior Researcher of the Department of Biology and Biochemistry of Soils

Russian Federation, Moscow

Mikhail V. Semenov

V.V. Dokuchaev Soil Science Institute

Email: gosmv@rambler.ru
ORCID iD: 0000-0001-6811-5793

PhD of Biology, Senior Researcher of the Department of Biology and Biochemistry of Soils

Russian Federation, Moscow

Anatoly I. Stifeev

Horticulture and Plant Protection

Email: stifeev09.2015@yandex.ru
ORCID iD: 0000-0001-7872-8921

Dr.Sc. of agricultural sciences, chief researcher of department of ecology, gardening and protection of plants

Russian Federation, Kursk

Dmitry A. Nikitin

V.V. Dokuchaev Soil Science Institute

Email: dimnik90@mail.ru
ORCID iD: 0000-0002-8533-6536

PhD of Biology, Researcher of the Department of Soil Biology and Biochemistry

Russian Federation, Moscow

Tatiana V. Kolganova

Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: tatrifon@mail.ru
ORCID iD: 0000-0002-7436-5219

PhD of Technical Sciences, Senior Researcher

Russian Federation, Москва

Evgeny E. Andronov

V.V. Dokuchaev Soil Science Institute; All-Russian Research Institute for Agricultural Microbiology

Email: eeandr@gmail.com
ORCID iD: 0000-0003-0437-9292

PhD of Biology, Leading Researcher of the Department of Biology and Biochemistry of Soils; Manager of the Laboratory of Microbiological Monitoring and Bioremediation of Soils

Russian Federation, Saint Petersburg; Saint Petersburg, Pushkin

References

  1. Sourkova M, Frouz J, Fettweis U, et al. Soil development and properties of microbial biomass succession in reclaimed post mining sites near Sokolov (Czech Republic) and near Cottbus (Germany). Geoderma. 2005;129(1-2): 73-80. https://doi.org/10.1016/j.geoderma.2004. 12.032.
  2. Dangi SR, Stahl PD, Wick AF, et al. Soil microbial community recovery in reclaimed soils on a surface coal mine site. Soil Sci Soc Am J. 2012;76(3):915-924. https://doi.org/10.2136/sssaj2011.0288.
  3. Liu S, Liu W, Yang M, et al. The genetic diversity of soil bacteria affected by phytoremediation in a typical barren rare earth mined site of South China. Springerplus. 2016;5(1):1131. https://doi.org/10.1186/s40064-016-2814-0.
  4. Смольникова В.В., Емельянов С.А. Биотехнологические основы оптимизации микрофлоры нефтезагрязненных субстратов // Юг России: экология, развитие. – 2010. – Т. 5. – № 3. – С. 106–110. [Smolnikova VV, Emilyanov SA. Biotechnological bases of optimization of microflora of the petropolluted substrata. Ug Rossii: ecologia, rasvitie. 2010;5(3):106-110. (In Russ.)]
  5. Frouz J, Novakowa A. Development of soil microbial properties in topsoil layer during spontaneous succession in heaps after brown coal mining in relation to humus microstructure development. Geoderma. 2005;129: 54-64. https://doi.org/10.1016/j.geoderma. 2004.12.033.
  6. Zhelezova A, Chernov T, Tkhakakhova A, et al. Prokaryotic community shifts during soil formation on sands in the tundra zone. PLoS One. 2019;14(4): e0206777. https://doi.org/10.1371/journal.pone.0206777.
  7. Appenroth KJ. Definition of «Heavy Metals» and their role in biological systems. Soil Biology. 2010;19:19-29. https://doi.org/10.1007/978-3-642-02436-8_2.
  8. Сангаджиева Л.Х., Сангаджиева О.С., Даваева Ц.Д., и др. Тяжелые металлы в компонентах ландшафтов Калмыкии // Юг России: экология, развитие. – 2010. – Т. 5. – № 1. – С. 156–161. [Sangadjieva LH, Sangadjieva OS, Davaeva CD, et al. Heavy metals in the landscape components of the Kalmykia. Ug Rossii: ecologia, rasvitie. 2010;5(1):156-161. (In Russ.)]
  9. Lorenz N, Hintemann T, Kramarewa T, et al. Response of microbial activity and microbial community composition in soils to long-term arsenic and cadmium exposure. Soil Biol Biochem. 2006;38(6):1430-1437. https://doi.org/ 10.1016/j.soilbio.2005.10.020.
  10. Oliveira A, Pampulha ME. Effects of long-term heavy metal contamination on soil microbial characteristics. J Biosci Bioeng. 2006;102(3): 157-161. https://doi.org/10.1263/jbb.102.157.
  11. Gołębiewski M, Deja-Sikora E, Cichosz M, et al. 16S rDNA pyrosequencing analysis of bacterial community in heavy metals polluted soils. Microb Ecol. 2014;67(3):635-647. https://doi.org/10.1007/s00248-013-0344-7.
  12. Колесников С.И., Ярославцев М.В., Спивакова Н.А., и др. Влияние загрязнения тяжелыми металлами на биологические свойства горных черноземов юга России // Юг России: экология, развитие. – 2012. – Т. 7. – № 2. – С. 103–109. [Kolesnikov SI, Yaroslavcev MV, Spivakova NA, et al. Influence of pollution by heavy metals on biological properties of mountain chernozems of the south of Russia. Ug Rossii: ecologia, rasvitie. 2012;7(2):103-109. (In Russ.)]
  13. Li X, Meng D, Li J, et al. Response of soil microbial communities and microbial interactions to long-term heavy metal contamination. Environ Pollut. 2017;231(Pt 1):908-917. https://doi.org/10.1016/j.envpol.2017.08.057.
  14. Стифеев А.И., Никитина О.В., Бессонова Е.А., Кемов К.Н. Рекультивация нарушенных земель и технологии их реабилитации на территории Центрального Черноземья // Международный сельскохозяйственный журнал. – 2017. – № 6. – С. 34–38. [Stifeev AI, Nikitina OV, Bessonova EA, Kemov KN. Recultivacia narushennyh zemel I tehnologii ih reabilitacii na territorii Centralnogo Chernozemya. Mezhdunarodnyi sel’skokhoziaistvennyi zhurnal. 2017;(6): 34-38. (In Russ.)]. https://doi.org/10.24411/ 2587-6740-2017-16008.
  15. Caporaso JG, Kuczynski J, Stombaugh J, et al. Correspondence QIIME allows analysis of high- throughput community sequencing data Intensity normalization improves color calling in SOLiD sequencing. Nature Publishing Group. 2010;7(5):335-336. https://doi.org/10.1038/nmeth.f.303.
  16. DeSantis TZ, Hugenholtz P, Larsen N, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72(7):5069-5072. https://doi.org/10.1128/AEM.03006-05.
  17. Стифеев А.И., Головастикова А.В., Бессонова Е.А. Изменение состава и структуры микробного сообщества в условиях техногенного ландшафта отвалов Михайловского ГОКа КМА // Вестник Курской государственной сельскохозяйственной академии. – 2011. – № 4. – С. 40–41. [Stifeev AI, Golovastikova AV, Bessonova EA. Ismenenia sostava I structury microbnogo soobschestva v usloviyah tehnogennogo landshafta otvalov Mihaylovskogo GOKa KMA. Vestnik Kurskoy gosudarstvennoy selkohozyaystvennoy akademii. 2011;(4):40-41. (In Russ.)]
  18. Бриндукова Е.Е. Закономерности аккумуляции валовых и подвижных форм тяжелых металлов в черноземе типичном юго-западной Лесостепи: Автореф. дис. … докт. биол. наук. – Курск, 2010. – 19 с. [Brindukova EE. Zakonomernosti akkumulyatsii valovykh i podvizhnykh form tyazhelykh metallov v chernozeme tipichnom yugo-zapadnoy Lesostepi. [dissertation abstract] Kursk; 2010. 19 p. (In Russ.)]. Доступно по: https://search.rsl.ru/ru/record/01004617735. Ссылка активна на 02.02.2020.
  19. Boldt-Burisch K, Naeth MA, Schneider BU, et al. Linkage between root systems of three pioneer plant species and soil nitrogen during early reclamation of a mine site in Lusatia, Germany. Resoration Ecology. 2015; 23(4):357-365. https://doi.org/10.1111/rec.12190.
  20. Семенов М.В., Манучарова Н.А., Степанов А.Л. Распределение метаболически активных представителей прокариот (архей и бактерий) по профилям чернозема и бурой полупустынной почвы // Почвоведение. – 2016. – № 2. – С. 239–248. [Semenov MV, Manucharova NA, Stepanov AL. Distribution of metabolically active prokaryotes (Archaea and Bacteria) throughout the profiles of chernozem and brown semidesert soil. Pochvovedenie. 2016;(2):239-248. (In Russ.)]. https://doi.org/10.7868/S0032180X16020106.
  21. Bergmann GT, Bates ST, Eilers KG, et al. The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol Biochem. 2011;43(7):1450-1455. https://doi.org/10.1016/j.soilbio.2011.03.012.
  22. Semenov MV, Chernov TI, Tkhakakhova AK, et al. Distribution of prokaryotic communities throughout the Chernozem profiles under different land uses for over a century. Appl Soil Ecol. 2018;127:8-18. https://doi.org/10.1016/j.apsoil.2018.03.002.
  23. Elliott DR, Thomas AD, Hoon SR, Sen R. Niche partitioning of bacterial communities in biological crusts and soils under grasses, shrubs and trees in the Kalahari. Biodiversity Conservat. 2014;23(7):1709-1733. https://doi.org/10.1007/s10531-014-0684-8.
  24. Pershina EV, Ivanova EA, Korvigo IO, et al. Investigation of the core microbiome in main soil types from the East European plain. Sci Total Environ. 2018;631:1421-1430. https://doi.org/10.1016/j.scitotenv.2018.03.136.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure: 1. The number of copies of the 16S rRNA gene of bacteria (a) and archaea (b) in technozems (LL1 and LL1LL1b) and embryozems (LL25–50) of the dumps of the Kursk magnetic anomaly, as well as in the control soil (control_U, control_D)

Download (41KB)
3. Figure: 2. Indicators of alpha-diversity of technozems and embryozems of overburden rocks of the Kursk magnetic anomaly, as well as in the control soil

Download (54KB)
4. Figure: 3. PCoA-analysis of unweighted (a) and weighted (b) Unifrac distances of microbial communities of technozems and embryozems of overburden dumps of the Kursk magnetic anomaly and in the control soil. Layers 0–5 cm are shown in gray, 5–10 cm in black

Download (121KB)
5. Figure: 4. The structure of microbial communities of the studied soils at the phylum level

Download (266KB)
6. Figure: 5. Heat map of dominant taxa associated with the studied stages of soil formation on the dumps of the Kursk magnetic anomaly and in samples of control soil

Download (508KB)

Copyright (c) 2020 Ivanova E.A., Pershina E.V., Karpova D.V., Tkhakakhova A.K., Zhelezova A.D., Rogova O.B., Semenov M.V., Stifeev A.I., Nikitin D.A., Kolganova T.V., Andronov E.E.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies