Phylogenetic characteristic of nodul bacteria endemic for Southern Ural species of the genus Oxytropis (fabaceae)

Cover Page

Cite item

Abstract

Background. An analysis of the spatial distribution of some taxonomically and ecologically related legumes in the Ural showed a nontrivial spatial distribution of related species of the genus Oxytropis DC of the Orobia Bunge section within the Uchalinsky uplands. Despite the similarities in ecology, these species practically do not grow together. Explicit spatial segregation of closely related plants over a relatively small area allows this phenomenon to be used as a convenient model for studying the effect of segregation of closely related legume species on the genetic composition of their nodule bacteria.

Materials and methods. The genetic diversity of nodule bacteria entering into symbiosis with O. kungurensis, O. baschkiriensis, O. approximata and O. gmelinii plants was studied. In addition, the polymorphism of their symbiotic genes has also been analyzed.

Results. Phylogenetic characteristics of nodule bacteria endemic for the Southern Ural belonging to 4 species of leguminous plants of the genus Oxytropis of the section Orobia: O. kungurensis, O. baschkiriensis, O. approximata, O. gmelinii which are characterized by spatial separation of the growth sites, also called plant segregation, are given. It was shown that all of them belong to the genus Mesorhizobium despite certain phylogenetic differences of bacteria. Analysis of the symbiotic genes of the analyzed strains revealed a lack of congruence of their phylogeny with the core part of the genome. It was found that the microsymbionts of O. baschkiriensis plants differ in the phylogeny of nod-genes from nodule bacteria of other plants of the Oxytropis genus and are close to microsymbionts of plants of the Lupinaster genus growing in the Southern Urals.

Conclusion. Acquisition of the property to enter into symbiosis with nodule bacteria of plants of the genus Lupinaster may turn out to be an adaptive mechanism that arose as a result of segregation of O. baschkiriensis from other species of Oxytropis.

About the authors

Andrei Kh. Baymiev

Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Author for correspondence.
Email: baymiev@anrb.ru
ORCID iD: 0000-0001-6637-9365
SPIN-code: 1919-5236
ResearcherId: R-9219-2016

PhD, Leading Researcher, Laboratory of Plant and Microbial Bioengineering

Russian Federation, Ufa

Anastasiya A. Vladimirova

Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Email: vladimirovaw@bk.ru
SPIN-code: 2059-9396

Graduate Student, Laboratory of Plant and Microbial Bioengineering

Russian Federation, Ufa

Ekaterina S. Akimova

Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Email: iv.katerina-bio@yandex.ru

PhD, Researcher, Laboratory of Plant and Microbial Bioengineering

Russian Federation, Ufa

Roman S. Gumenko

Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Email: r.gumenko@yandex.ru
SPIN-code: 4216-4301

Junior Researcher, Laboratory of Plant and Microbial Bioengineering

Russian Federation, Ufa

Albert A. Muldashev

Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Email: muldashev_ural@mail.ru
SPIN-code: 1362-7915
Scopus Author ID: 6508160098
ResearcherId: S-3970-2017

PhD, Senior Researcher

Russian Federation, Ufa

Alexei V. Chemeris

Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Email: chemeris@anrb.ru
SPIN-code: 1248-2582
Scopus Author ID: 7003329432

PhD, Laboratory of Plant and Microbial Bioengineering

Russian Federation, Ufa

Alexei Kh. Baymiev

Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Email: baymiev@mail.ru
ORCID iD: 0000-0003-0606-6740
SPIN-code: 3771-4063
Scopus Author ID: 6507372280
ResearcherId: R-8393-2016

PhD, Head of Laboratory of Plant and Microbial Bioengineering

Russian Federation, Ufa

References

  1. Тихонович И.А., Борисов А.Ю., Цыганов В.Е., и др. Интеграция генетических систем растений и микроорганизмов при симбиозе // Успехи современной биологии. – 2005. – Т. 125. – № 3. – С. 227–238. [Tihonovich IA, Borisov AYu, Cyganov VE, et al. Integration of plant and microbial genetic systems in symbiosis. Advances in modern biology. 2005;125(3):227-238. (In Russ.)]
  2. Проворов Н.А. Специфичность взаимодействия клубеньковых бактерий с бобовыми растениями и эволюция бобово-ризобиального симбиоза // Сельскохозяйственная биология. – 1985. – Т. 20. – № 3. – С. 34–47. [Provorov NA. Specifichnost’ vzaimodejstviya kluben’kovyh bakterij s bobovymi rasteniyami i evolyuciya bobovo-rizobial’nogo simbioza. Sel’skokhoziaistvennaia biologiia. 1985;20(3):34-47. (In Russ.)]
  3. Парийская А.Н., Клевенская И.Л. Распространение в природе и возможные пути эволюции азотфиксирующего симбиоза // Успехи микробиологии. – 1979. – Т. 14. – С. 124–147. [Parijskaya AN, Klevenskaya IL. Rasprostranenie v prirode i vozmozhnye puti evolyucii azotfiksiruyushchego simbioza. Uspekhi mikrobiologii. 1979;14:124-147. (In Russ.)]
  4. La Pierre KJ, Simms EL, Tariq M, et al. Invasive legumes can associate with many mutualists of native legumes, but usually do not. Ecol Evol. 2017;7(20):8599-8611. https://doi.org/10.1002/ece3.3310.
  5. Simonsen AK, Dinnage R, Barrett LG, et al. Symbiosis limits establishment of legumes outside their native range at a global scale. Nat Commun. 2017;8:14790. https://doi.org/10.1038/ncomms14790.
  6. Князев М.С. Бобовые (Fabaceae LINDL.) Урала: видообразование, географическое распространение, историко-экологические свиты: Автореф. дис. … докт. биол. наук. – СПб., 2015. – 40 с. [Knyazev MS. Bobovyye (Fabaceae LINDL.) Urala: vidoobrazovaniye, geograficheskoye rasprostraneniye, istoriko-ekologicheskiye svity. [dissertation abstract] Saint Petersburg; 2015. 40 р. (In Russ.)]. Доступно по: https://search.rsl.ru/ru/record/01005560640. Ссылка активна на 02.02.2020.
  7. Баймиев А.Х., Птицын К.Г., Баймиев А.Х. Влияние интродукции караганы древовидной на состав ее клубеньковых бактерий // Микробиология. – 2010. – Т. 79. – № 1. – С. 123–128. [Baymiev AnK, Ptitsyn KG, Baimiev AlK. Influence of the introduction of Caragana arborescenson the composition of its root nodule bacteria. Microbiology. 2010;79(1):123-128. (In Russ.)]. https://doi.org/10.1134/S0026261710010157.
  8. Williams JG, Kubelik AR, Livak KJ, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990;18(22):6531-6535. https://doi.org/10.1093/nar/18.22.6531.
  9. Laguerre G, Mavingui P, Allard MR, et al. Typing of rhizobia by PCR DNA fingerprinting and PCR-restriction fragment length polymorphism analysis of chromosomal and symbiotic gene regions: application to Rhizobium leguminosarum and its different biovars. Appl Environ Microbiol. 1996;62(6):2029-2036. https://doi.org/10.1128/aem.62.6.2029-2036.1996.
  10. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991;173(2):697-703. https://doi.org/10.1128/jb.173.2.697-703.1991.
  11. Баймиев А.Х., Иванова Е.С., Гуменко Р.С., и др. Анализ симбиотических генов клубеньковых бактерий бобовых растений Южного Урала // Генетика. – 2015. – Т. 51. – № 12. – С. 1359–1367. [Baymiev AK, Ivanova ES, Gumenko RS, et al. Analysis of symbiotic genes of leguminous root nodule bacteria grown in the Southern Urals. Genetika. 2015;51(12): 1359-1367. (In Russ.)]. https://doi.org/10.7868/ S001667581511003X.
  12. Проворов Н.А. Эволюция генетических систем симбиоза у клубеньковых бактерий // Генетика. – 1996. – Т. 32. – № 8. – С. 1029–1040. [Provorov NA. Evolution of symbiotic genetic systems in rhizobia. Genetika. 1996;32(8):1029-1040. (In Russ.)]
  13. Franche C, Lindström K, Elmerich C. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant and Soil. 2009;321(1-2):35-59. https://doi.org/10.1007/s11104-008-9833-8.
  14. Fischer HM. Genetic regulation of nitrogen fixation in rhizobia. Microbiol Rev. 1994;58(3): 352-386. https://doi.org/10.1128/mmbr.58.3. 352-386.1994.
  15. Проворов Н.А., Воробьев Н.И. Эволюционная генетика клубеньковых бактерий: молекулярные и популяционные аспекты // Генетика. – 2000. – Т. 36. – № 12. – С. 1573–1587. [Provorov NA, Vorob’ev NI. Evolutionary genetics of nodule bacteria: Molecular and population aspects. Genetika. 2000;36(12):1573-1587. (In Russ.)]
  16. Nandasena KG, O’hara GW, Tiwari RP, Howieson JG. Rapid in situ evolution of nodulating strains for Biserrula pelecinus L. through lateral transfer of a symbiosis island from the original mesorhizobial inoculant. Appl Environ Microbiol. 2006;72(11):7365-7367. https://doi.org/10.1128/AEM.00889-06.
  17. Andam CP, Mondo SJ, Parker MA. Monophyly of nodA and nifH genes across Texan and Costa Rican populations of Cupriavidus nodule symbionts. Appl Environ Microbiol. 2007;73(14): 4686-4690. https://doi.org/10.1128/AEM. 00160-07.
  18. Barcellos FG, Menna P, da Silva Batista JS, Hungria M. Evidence of horizontal transfer of symbiotic genes from a Bradyrhizobium japonicum inoculant strain to indigenous diazotrophs Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian Savannah soil. Appl Environ Microbiol. 2007;73(8):2635-2643. https://doi.org/10.1128/AEM.01823-06.
  19. Zhao CT, Wang ET, Chen WF, Chen WX. Diverse genomic species and evidences of symbiotic gene lateral transfer detected among the rhizobia associated with Astragalus species grown in the temperate regions of China. FEMS Microbiol Lett. 2008;286(2):263-273. https://doi.org/10.1111/j.1574-6968.2008.01282.x.
  20. Bailly X, Olivieri I, Brunel B, et al. Horizontal gene transfer and homologous recombination drive the evolution of the nitrogen-fixing symbionts of Medicago species. J Bacteriol. 2007;189(14):5223-5236. https://doi.org/10.1128/JB.00105-07.
  21. Freiberg C, Fellay R, Bairoch A, et al. Molecular basis of symbiosis between Rhizobium and legumes. Nature. 1997;387(6631):394-401. https://doi.org/10.1038/387394a0.
  22. Estrella MJ, Muñoz S, Soto MJ, et al. Genetic diversity and host range of rhizobia nodulating Lotus tenuis in typical soils of the Salado River Basin (Argentina). Appl Environ Microbiol. 2009;75(4):1088-1098. https://doi.org/10.1128/AEM.02405-08.
  23. Marchetti M, Capela D, Glew M, et al. Experimental evolution of a plant pathogen into a legume symbiont. PLoS Biol. 2010;8(1): e1000280. https://doi.org/10.1371/journal.pbio. 1000280.
  24. Zaneveld JR, Nemergut DR, Knight R. Are all horizontal gene transfers created equal? Prospects for mechanism-based studies of HGT patterns. Microbiology. 2008;154(Pt 1):1-15. https://doi.org/10.1099/mic.0.2007/011833-0.
  25. Provorov NA, Vorobyov NI. Simulation of legume-rhizobia symbiosis evolution under the multi-strain competition of bacteria for inoculation of symbiotic habitats. Ecol Gen. 2008;6(4):3-11. https://doi.org/10.17816/ecogen643-11.
  26. Проворов Н.А., Воробьев Н.И. Роль горизонтального переноса генов в эволюции клубеньковых бактерий, направляемой растением-хозяином // Успехи современной биологии. – 2010. – Т. 130. – № 4. – С. 336–345. [Provorov NA, Vorob’ev NI. Impact of horizontal gene transfer on evolution of root nodule bacteria directed by host plant. Advances in modern biology. 2010;130(4):336-345. (In Russ.)]
  27. Баймиев А.Х., Акимова Е.С., Гуменко Р.С., и др. Генетическое разнообразие и филогения клубеньковых бактерий, выделенных из клубеньков растений рода Lupinaster, произрастающих на Южном Урале // Генетика. – 2019. – Т. 55. – № 1. – С. 52–59. [Baymiev AK, Akimova ES, Gumenko RS, et al. Genetic diversity and phylogeny of root nodule bacteria isolated from nodules of plants of the Lupinaster genus inhabiting the Southern Urals. Genetika. 2019;55(1): 52-59. (In Russ.)]. https://doi.org/10.1134/S00166 75819010028.
  28. Князев М.С. Заметки по систематике и хорологии видов рода Oxytropis (Fabaceae) на Урале. II. Виды родства Oxytropis ambigua // Ботанический журнал. – 2001. – Т. 86. – № 1. – С. 126–134. [Knyazev MS. Zametki po sistematike i horologii vidov roda Oxytropis (Fabaceae) na Urale. II. Vidy rodstva Oxytropis ambigua. Botanicheskiy zhurnal. 2001;86(1): 126-134. (In Russ.)]
  29. Акулова З.В., Бобров Е.Г., Васильева Л.И., и др. Флора европейской части СССР. Т. VI / отв. ред. А.А. Федоров. – Л.: Наука, 1987. – 254 с. [Akulova ZV, Bobrov EG, Vasil’eva LI, et al. Flora evropeyskoy chasti SSSR. Vol. VI. Ed by A.A. Fedorov. Leningrad: Nauka; 1987. 254 р. (In Russ.)]
  30. Карасев Е.С., Чижевская Е.П., Симаров Б.В., и др. Сравнительный анализ филогений симбиотических генов клубеньковых бактерий с использованием метадеревьев // Сельскохозяйственная биология. – 2017. – Т. 52. – № 5. – С. 995–1003. [Karasev ES, Chizhevskaya EP, Simarov BV, et al. Comparative phylogenetic analysis of symbiotic genes of different nodule bacteria groups using the metatrees method. Sel’skokhoziaistvennaia biologiia. 2017;52(5):995-1003. (In Russ.)]. https://doi.org/10.15389/agrobiology.2017.5.995rus.
  31. Карасев Е.С., Андронов Е.Е., Аксенова Т.С., и др. Эволюции ризобий козлятника (Neorhizobium galegae): анализ полиморфизма генов фиксации азота и развития клубеньков // Генетика. – 2019. – Т. 55. – № 2. – С. 234–238. [Karasev ES, Andronov EE, Aksenova TS, et al. Evolution of Goat’s Rue Rhizobia (Neorhizobium galegae): analysis of polymorphism of the nitrogen fixation and nodule formation genes. Genetika. 2019;55(2): 234-238. (In Russ.)]. https://doi.org/10.1134/S001667581902 0085.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Foregram of RAPD analysis of DNA of rhizobia isolated from nodules of O. kungurensis. The digits indicate the numbers of genetically homogeneous groups. M: 100 bp marker

Download (146KB)
3. Fig. 2. Phylogenetic tree of nodule bacteria constructed on the basis of the comparative analysis of 16S rRNA gene sequences. The strains of microorganisms studied in this work are marked bold; the strains isolated from the nodules of L. pentaphyllus and L. Albus are underlined

Download (307KB)
4. Fig. 3. Phylogenetic tree of nodule bacteria constructed on the basis of the comparative analysis of recA gene sequences. The strains of microorganisms studied in this work are marked bold; the strains isolated from the nodules of L. pentaphyllus and L. Albus are underlined

Download (322KB)
5. Fig. 4. Phylogenetic tree of nodule bacteria constructed on the basis of the comparative analysis of nifH gene sequences. The strains of microorganisms studied in this work are marked bold; the strains isolated from the nodules of L. pentaphyllus and L. Albus are underlined

Download (275KB)
6. Fig. 5. Phylogenetic tree of nodule bacteria constructed on the basis of the comparative analysis of the nodC gene sequences. The strains of microorganisms studied in this work are marked bold; the strains isolated from the nodules of L. pentaphyllus and L. Albus are underlined

Download (318KB)

Copyright (c) 2020 Baymiev A.K., Vladimirova A.A., Akimova E.S., Gumenko R.S., Muldashev A.A., Chemeris A.V., Baymiev A.K.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies