Effect of high light conditions on the response of Arabidopsis thaliana plants with suppressed mitochondrial alternative oxidase

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Plants as sessile organisms have developed biochemical pathways to protect themselves from the excess light energy. Mitochondrial alternative oxidase (AOX) participates in the oxidation of reductants exported from chloroplasts, thereby optimizing photosynthesis and protecting cells from photodamage.

AIM: The effect of high light on respiration and the relative transcripts content of a number of genes in Arabidopsis thaliana plants of the T-DNA insertional line for AOX1a (aox1a) was studied and compared with the response of the antisense silencing of AOX1a line (AS-12) and wild type line Col-0.

MATERIALS AND METHODS: Four-week-old A. thaliana plants of three lines grown at 90 µmol/m2 · s and then exposed to moderately high light conditions, 400 µmol/m2 · s, in a short-term experiment (8 h). Respiratory pathways activity, gene expression, and superoxide anion content were determined during experiment.

RESULTS: Plants of the aox1a line in response to high light were characterized by the absence of the total and alternative respiration reaction and the absence of the AOX1 protein in spite of the increased mRNA level of AOX1c, in contrast to the Col-0 and AS-12 lines. Also, an increased content of transcripts of only SAPX and CHS were found, while in the other lines a compensatory increase in the expression of many “defense” genes was revealed.

CONCLUSIONS: Thus, the aox1a line was characterized by a low compensatory effect at the level of defense systems activation. This is apparently caused by the absence of the AOX1 protein and, as a result, the weakening of the stress signal and stress response. The results obtained indicate the important role of AOX in the response of respiration to light stress; can be used to study the signaling pathways of regulation of AOX1a expression.

About the authors

Elena V. Garmash

Institute of Biology Komi Science Centre of the Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: garmash@ib.komisc.ru
ORCID iD: 0000-0001-8104-5048
SPIN-code: 4512-8460

Dr. Sci. (Biol.), leading research associate

Russian Federation, Syktyvkar

Kirill V. Yadrikhinskiy

Pitirim Sorokin Syktyvkar State University

Email: kirill030442@gmail.com

student
Russian Federation, Syktyvkar

Mikhail A. Shelyakin

Institute of Biology Komi Science Centre of the Ural Branch of the Russian Academy of Sciences

Email: shelyakin@ib.komisc.ru
ORCID iD: 0000-0001-8537-6995
SPIN-code: 9526-1351

Cand. Sci. (Biol.), research associate

Russian Federation, Syktyvkar

Elena S. Belykh

Institute of Biology Komi Science Centre of the Ural Branch of the Russian Academy of Sciences

Email: belykh@ib.komisc.ru
ORCID iD: 0000-0002-0182-6475
SPIN-code: 1804-9569

Cand. Sci. (Biol.), research associate

Russian Federation, Syktyvkar

References

  1. Wilhelm C, Selmar D. Energy dissipation is an essential mechanism to sustain the viability of plants: The physiological limits of improved photosynthesis. J Plant Physiol. 2011;168(2):79–87. doi: 10.1016/j.jplph.2010.07.012
  2. Raghavendra AS, Padmasree K. Beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation. Trends Plant Sci. 2003;8(11):546–553. doi: 10.1016/j.tplants.2003.09.015
  3. Noguchi K, Yoshida K. Interaction between photosynthesis and respiration in illuminated leaves. Mitochondrion. 2008;8(1):87–99. doi: 10.1016/j.mito.2007.09.003
  4. Vanlerberghe GC, Dahal K, Alber NA, Chadee A. Photosynthesis, respiration and growth: A carbon and energy balancing act for alternative oxidase. Mitochondrion. 2020;52:197–211. doi: 10.1016/j.mito.2020.04.001
  5. Garmash EV. Suppression of mitochondrial alternative oxidase can result in upregulation of the ROS scavenging network: some possible mechanisms underlying the compensation effect. Plant Biol. 2022;25(1):43–53. doi: 10.1111/plb.13477
  6. Dinakar C, Raghavendra AS, Padmasree K. Importance of AOX pathway in optimizing photosynthesis under high light stress: role of pyruvate and malate in activating AOX. Physiol Plant. 2010;139(1):13–26. doi: 10.1111/j.1399-3054.2010.01346.x
  7. Albury MS, Elliott C, Moore AL. Towards a structural elucidation of the alternative oxidase in plants. Physiol Plant. 2009;137(4):316–327. doi: 10.1111/j.1399-3054.2009.01270.x
  8. Polidoros AN, Mylona PV, Arnholdt-Schmitt B. Aox gene structure, transcript variation and expression in plants. Physiol Plant. 2009;137(4):342–353. doi: 10.1111/j.1399-3054.2009.01284.x
  9. Bouché N, Bouchez D. Arabidopsis gene knockout: phenotypes wanted. Curr Opin Plant Biol. 2001;4(2):111–117. doi: 10.1016/S1369-5266(00)00145-X
  10. The Arabidopsis genome initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000;408:796–815. doi: 10.1038/35048692
  11. Clifton R, Lister R, Parker KL, et al. Stress-induced co-expression of alternative respiratory chain components in Arabidopsis thaliana. Plant Mol Biol. 2005;58:193–212. doi: 10.1007/s11103-005-5514-7
  12. Clifton R, Millar AH, Whelan J. Alternative oxidases in Arabidopsis: A comparative analysis of differential expression in the gene family provides new insights into function of non-phosphorylating bypasses. Biochim Biophys Acta Bioenerg. 2006;1757(7):730–741. doi: 10.1016/j.bbabio.2006.03.009
  13. Ho LHM, Giraud E, Uggalla V, et al. Identification of regulatory pathways controlling gene expression of stress-responsive mitochondrial proteins in Arabidopsis. Plant Physiol. 2008;147(4): 1858–1873. doi: 10.1104/pp.108.121384
  14. Yoshida K, Noguchi K. Differential gene expression profiles of the mitochondrial respiratory components in illuminated Arabidopsis leaves. Plant Cell Physiol. 2009;50(8):1449–1462. doi: 10.1093/pcp/pcp090
  15. Vishwakarma A, Tetali SD, Selinski J, et al. Importance of the alternative oxidase (AOX) pathway in regulating cellular redox and ROS homeostasis to optimize photosynthesis during restriction of the cytochrome oxidase pathway in Arabidopsis thaliana. Ann Bot. 2015;116(4):555–569. doi: 10.1093/aob/mcv122
  16. Garmash EV, Belykh ES, Velegzhaninov IO. The gene expression profiles of mitochondrial respiratory components in Arabidopsis plants with differing amounts of ALTERNATIVE OXIDASE1a under high intensity light. Plant Signal Behav. 2021;16(3):1864962. doi: 10.1080/15592324.2020.1864962
  17. Liu J, Li Z, Wang Y, et al. Overexpression of ALTERNATIVE OXIDASE1a alleviates mitochondria-dependent programmed cell death induced by aluminium phytotoxicity in Arabidopsis. J Exp Bot. 2014;65(15):4465–4478. doi: 10.1093/jxb/eru222
  18. Zhang D-W, Yuan S, Xu F, et al. Light intensity affects chlorophyll synthesis during greening process by metabolite signal from mitochondrial alternative oxidase in Arabidopsis. Plant Cell Environ. 2016;39(1):12–25. doi: 10.1111/pce.12438
  19. Garmash EV, Velegzhaninov IO, Ermolina KV, et al. Altered levels of AOX1a expression result in changes in metabolic pathways in Arabidopsis thaliana plants acclimated to low dose rates of ultraviolet B radiation. Plant Sci. 2020;291:110332. doi: 10.1016/j.plantsci.2019.110332
  20. Garmash EV, Dymova OV, Silina EV, et al. AOX1a expression in Arabidopsis thaliana affects the state of chloroplast photoprotective systems under moderately high light conditions. Plants. 2023;11(22):3030. doi: 10.3390/plants11223030
  21. Giraud E, Ho LHM, Clifton R, et al. The absence of ALTERNATIVE OXIDASE1a in Arabidopsis results in acute sensitivity to combined light and drought stress. Plant Physiol. 2008;147(2):595–610. doi: 10.1104/pp.107.115121
  22. Strodtkötter I, Padmasree K, Dinakar C, et al. Induction of the AOX1D Isoform of alternative oxidase in A. thaliana T-DNA insertion lines lacking isoform AOX1A is insufficient to optimize photosynthesis when treated with Antimycin A. Mol Plant. 2009;2(2):284–297. doi: 10.1093/mp/ssn089
  23. Kühn K, Yin G, Duncan O, et al. Decreasing electron flux through the cytochrome and/or alternative respiratory pathways triggers common and distinct cellular responses dependent on growth conditions. Plant Physiol. 2015;167(1):228–250. doi: 10.1104/pp.114.249946
  24. Umbach AL, Fiorani F, Siedow JN. Characterization of transformed Arabidopsis with altered alternative oxidase levels and analysis of effects on reactive oxygen species in tissue. Plant Physiol. 2005;139(4):1806–1820. doi: 10.1104/pp.105.070763
  25. Boyes DC, Zayed AM, Ascenzi R, et al. Growth stage-based phenotypic analysis of Arabidopsis: A model for high throughput functional genomics in plants. Plant Cell. 2001;13:1499–1510. doi: 10.2307/3871382
  26. Czechowski T, Stitt M, Altmann T, et al. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 2005;139(1):5–17. doi: 10.1104/pp.105.063743
  27. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–408. doi: 10.1006/meth.2001.1262
  28. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–254. doi: 10.1016/0003-2697(76)90527-3
  29. Chaitanya KSK, Naithani SC. Role of superoxide, lipid peroxidation and superoxide dismutase in membrane perturbation during loss of viability in seeds of Shorea robusta Gaertn. f. New Phytol. 1994;126(4):623–627. doi: 10.1111/j.1469-8137.1994.tb02957.x
  30. Foyer CH, Noctor G. Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 2011;155(1):2–18. doi: 10.1104/pp.110.167569
  31. Landi M, Tattini M, Gould KS. Multiple functional roles of anthocyanins in plant-environment interactions. Environ Exp Bot. 2015;119:4–17. doi: 10.1016/j.envexpbot.2015.05.012
  32. Fiorani F, Umbach AL, Siedow JN. The alternative oxidase of plant mitochondria is involved in the acclimation of shoot growth at low temperature. A study of Arabidopsis AOX1a transgenic plants. Plant Physiol. 2005;139(4):1795–1805. doi: 10.1104/pp.105.070789
  33. Yoshida K, Terashima I, Noguchi K. How and why does mitochondrial respiratory chain respond to light? Plant Signal Behav. 2011;6(6):864–866. doi: 10.4161/psb.6.6.15224
  34. Li Y-T, Liu M-J, Li Y, et al. Photoprotection by mitochondrial alternative pathway is enhanced at heat but disabled at chilling. Plant J. 2020;104(2):403–415. doi: 10.1111/tpj.14931
  35. Selinski J, Hartmann A, Deckers-Hebestreit G, et al. Alternative oxidase isoforms are differentially activated by tricarboxylic acid cycle intermediates. Plant Physiol. 2018;176(2):1423–1432. doi: 10.1104/pp.17.01331
  36. Schwarzländer M, Finkemeier I. Mitochondrial energy and redox signaling in plants. Antioxid Redox Signal. 2013;18(16):2122–2144. doi: 10.1089/ars.2012.5104
  37. Amirsadeghi S, Robson CA, McDonald AE, Vanlerberghe GC. Changes in plant mitochondrial electron transport alter cellular levels of reactive oxygen species and susceptibility to cell death signaling molecules. Plant Cell Physiol. 2006;47(11):1509–1519. doi: 10.1093/pcp/pcl016
  38. Wang J, Vanlerberghe GC. A lack of mitochondrial alternative oxidase compromises capacity to recover from severe drought stress. Physiol Plant. 2013;149(4):461–473. doi: 10.1111/ppl.12059
  39. El-Brolosy MA, Stainier DYR. Genetic compensation: A phenomenon in search of mechanisms. PLoS Genet. 2017;13:e1006780. doi: 10.1371/journal.pgen.1006780
  40. Ye J, Coulouris G, Zaretskaya I, et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinf. 2012;13:134. doi: 10.1186/1471-2105-13-134

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Total respiration (Vt) and activity of CN-resistant (alternative) respiration (RCN) in leaves of Arabidopsis thaliana plants with different expression of AOX1a grown at 90 μmol/(m2 · s) (0 h) and exposed for 8 h to increased illumination of 400 μmol/(m2 · s). Col-0 is a wild ecotype, aox1a is a line with a knockout of AOX1a, AS-12 is a line transformed by an antisense copy of AOX1a. The mean values from three experiments are presented (in each experiment n = 5) and their standard errors. The significance of parameter changes among all the presented average values is marked with different lowercase Latin letters (ANOVA, Duncan’s test, p < 0.05)

Download (81KB)
3. Fig. 2. The relative content of alternative oxidase (AOX) gene transcripts in the leaves of Arabidopsis thaliana plants with different AOX1a expression grown at 90 μmol/(m2 · s) (0 h) and exposed to increased illumination for 8 h — 400 μmol/(m2 · s). Col-0 — wild ecotype, aox1a is a line with a knockout of AOX1a, AS-12 is a line transformed by an antisense copy of AOX1a. The mean values from three experiments (in each experiment n = 9) and their standard errors are presented. The significance of parameter changes for each gene is marked with different lowercase Latin letters (ANOVA, Duncan’s test, p < 0.05)

Download (98KB)
4. Fig. 3. Alternative oxidase (AOX) immunoblots in a protein extract obtained from the leaves of Arabidopsis thaliana plants of lines with different levels of AOX1a expression grown at 90 μmol/(m2 · s) (0 h) and exposed for 8 h to high light at 400 μmol/(m2 · s). Col-0 — a wild ecotype, aox1a — T-DNA insertional line for AOX1a, AS-12 — antisense silencing of AOX1a line. The arrows on the left indicate the molecular weights of marker proteins

Download (119KB)
5. 24 Fig. 4. The content of superoxide radical in the leaves of Arabidopsis thaliana plants of lines with different levels of AOX1a expression, grown at 90 μmol/(m2 · s) (0 h) and exposed for 8 h to high light at 400 μmol/(m2 · s). Col-0 — wild ecotype, aox1a — T-DNA insertional line for AOX1a, AS-12 — antisense silencing of AOX1a line. The mean values from three experiments (in each experiment n = 4–6) and their standard errors are presented. The reliability of parameter changes is marked with different lowercase Latin letters (ANOVA, Duncan test, p < 0.05)

Download (101KB)
6. Fig. 5. Heat maps of genes encoding components of the respiratory pathways and antioxidant enzymes relative to their level in the control variant (0 h) in Arabidopsis thaliana plants with different expression of AOX1a grown at 90 μmol/(m2 · s) (0 h) and exposed for 8 h to high light at 400 μmol/(m2 · s). Col-0 — wild ecotype, aox1a — T-DNA insertional line for AOX1a, AS-12 — antisense silencing of AOX1a line. Black indicates an increase, white indicates a decrease in the relative content of gene transcripts

Download (374KB)

Copyright (c) 2023 Eco-Vector


 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».