Comparasion of the effectiveness of anchor proteins ScAGα1p, KpCW51p, KpCW61p for surface display in yeast Komagataella phaffii

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

BACKGROUND: Yeast display is an effective technology for exposure target proteins to the cell surface by fusing them with cell wall proteins. This technique, among other things, makes it possible to obtain vaccine preparations based on yeast by exposing antigen proteins on their cell surface. Finding and selecting proteins that allow effective exposure of target proteins on the surface of yeast cells is an urgent task.

AIM: The aim of this work was to evaluate the efficiency of cell wall proteins ScAGα1p, KpCW51p, KpCW61p for displaying the reporter protein on the Komagataella phaffii cell surface, including the study of several variants of the ScAGα1 gene coding sequence.

MATERIALS AND METHODS: The studied gene sequences were cloned under the control of the AOX1 gene promoter in the same reading frame as the eGFP reporter protein gene and integrated into the genome of the K. Phaffii yeast strain X-33.

RESULTS: Cytoimmunochemical analysis and confocal microscopy of strains displaying the eGFP protein on their surface under conditions of induction of the AOX1 gene promoter made it possible to identify the most effective anchor protein. The best efficiency was demonstrated for the sequence of the ScAGα1 gene without the native 3' non-coding region.

CONCLUSIONS: The plasmids obtained in the work will make it possible to obtain a yeast strain K. phaffii that effectively exposure proteins, including antigens, on its surface, which can be used as a vaccine preparation.

About the authors

Miklhail A. Tsygankov

Saint Petersburg State University

Author for correspondence.
Email: mial.tsygankov@yandex.ru
ORCID iD: 0000-0002-2513-6655
SPIN-code: 1098-0995
Scopus Author ID: 56252740000

Engineer-Researcher, Faculty of Biology, Department of Genetics and Biotechnology, Laboratory of biochemical genetics

Russian Federation, Saint Petersburg

Andrey M. Rumyantsev

Saint Petersburg State University

Email: rumyantsev-am@mail.ru
ORCID iD: 0000-0002-1744-3890
SPIN-code: 9335-1184
Scopus Author ID: 55370658800

Cand. Sci. (Med.), Senior Research Associate, Faculty of Biology, Department of Genetics and Biotechnology, Laboratory of biochemical genetics

Russian Federation, Saint Petersburg

Anastasiya S. Makeeva

Saint Petersburg State University

Email: anastasimakeeva@mail.ru
SPIN-code: 1412-8449

Engineer-Researcher, Postgraduate Student, Faculty of Biology, Department of Genetics and Biotechnology, Laboratory of biochemical genetics

Russian Federation, Saint Petersburg

Marina V. Padkina

Saint Petersburg State University

Email: mpadkina@mail.ru
ORCID iD: 0000-0002-4051-4837
SPIN-code: 7709-0449
Scopus Author ID: 6602596755

Dr. Sci. (Biol.), Professor, Faculty of Biology, Department of Genetics and Biotechnology, Laboratory of biochemical genetics

Russian Federation, Saint Petersburg

References

  1. Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985;228(4705):1315–1317. doi: 10.1126/science.4001944
  2. Ueda M. Establishment of cell surface engineering and its development. Biosci Biotechnol Biochem. 2016;80(7):1243–1253. doi: 10.1080/09168451.2016.1153953
  3. Schreuder MP, Brekelmans S, van den Ende H, Klis FM. Targeting of a heterologous protein to the cell wall of Saccharomyces cerevisiae. Yeast. 1993;9(4):399–409. doi: 10.1002/yea.320090410
  4. Boder ET, Wittrup KD. Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol. 1997;15(6):553–557. doi: 10.1038/nbt0697-553
  5. Kurtzman CP. Biotechnological strains of Komagataella (Pichia) pastoris are Komagataella phaffii as determined from multigene sequence analysis. J Ind Microbiol Biotechnol. 2009;36(11):1435–1438. doi: 10.1007/s10295-009-0638-4
  6. Kim S-Y, Sohn J-H, Pyun Y-R, Choi E-S. A cell surface display system using novel GPI-anchored proteins in Hansenula polymorpha. Yeast. 2002;19(13):1153–1163. doi: 10.1002/yea.911
  7. Tanaka T, Yamada R, Ogino C, Kondo A. Recent developments in yeast cell surface display toward extended applications in biotechnology. Appl Microbiol Biotechnol. 2012;95(3):577–591. doi: 10.1007/s00253-012-4175-0
  8. Bielen A, Tepariс R, Vujaklija D, Mrsa V. Microbial anchoring systems for cell-surface display of lipolytic enzymes. Food Technol Biotechnol. 2014;52(1):16–34.
  9. Wasilenko JL, Sarmento L, Spatz S, Pantin-Jackwood M. Cell surface display of highly pathogenic avian influenza virus hemagglutinin on the surface of Pichia pastoris cells using alpha-agglutinin for production of oral vaccines. Biotechnol Prog. 2010;26(2):542–547. doi: 10.1002/btpr.343
  10. Lei H, Jin S, Karlsson E, et al. Yeast surface-displayed H5N1 avian influenza vaccines. J Immunol Res. 2016;2016:4131324. doi: 10.1155/2016/4131324
  11. Angelini A, Chen TF, de Picciotto S, et al. Protein engineering and selection using yeast surface display. Methods Mol Biol. 2015;1319:3–36. doi: 10.1007/978-1-4939-2748-7_1
  12. Cherf GM, Cochran JR. Applications of yeast surface display for protein engineering. Methods Mol Biol. 2015;1319:155–175. doi: 10.1007/978-1-4939-2748-7_8
  13. Pack SP, Park K, Yoo YJ. Enhancement of β-glucosidase stability and cellobiose-usage using surface-engineered recombinant Saccharomyces cerevisiae in ethanol production. Biotechnology Letters. 2002;24:1919–1925. doi: 10.1023/A:1020908426815
  14. Andreu C, Del Olmo ML. Yeast arming systems: pros and cons of different protein anchors and other elements required for display. Appl Microbiol Biotechnol. 2018;102(6):2543–2561. doi: 10.1007/s00253-018-8827-6
  15. Mattanovich D, Callewaert N, Rouzé P, et al. Open access to sequence: browsing the Pichia pastoris genome. Microb Cell Fact. 2009;8:53. doi: 10.1186/1475-2859-8-53
  16. Cereghino JL, Cregg JM. Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiol Rev. 2000;24(1):45–66. doi: 10.1111/j.1574-6976.2000.tb00532.x
  17. Padkina MV, Sambuk EV. Prospects for the application of yeast display in biotechnology and cell biology (review). Applied Biochemistry and Microbiology. 2018;54(4):337–351. (In Russ.) doi: 10.7868/S0555109918040013
  18. Ahmad M, Hirz M, Pichler H, Schwab H. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol. 2014;98(12): 5301–5317. doi: 10.1007/s00253-014-5732-5
  19. Prabhu AA, Boro B, Bharali B, et al. Gene and process level modulation to overcome the bottlenecks of recombinant proteins expression in Pichia pastoris. Curr Pharm Biotechnol. 2017;18(15): 1200–1223. doi: 10.2174/1389201019666180329112827
  20. Cereghino GPL, Cereghino JL, Ilgen C, Cregg JM. Production of recombinant proteins in fermenter cultures of the yeast Pichia pastoris. Curr Opin Biotechnol. 2002;13(4):329–332. doi: 10.1016/S0958-1669(02)00330-0
  21. Gaboardi GC, Alves D, de los Santos DG, et al. Influence of Pichia pastoris X-33 produced in industrial residues on productive performance, egg quality, immunity, and intestinal morphometry in quails. Sci Rep. 2019;9(1):15372. doi: 10.1038/s41598-019-51908-0
  22. Mergler M, Wolf K, Zimmermann M. Development of a bisphenol A-adsorbing yeast by surface display of the Kluyveromyces yellow enzyme on Pichia pastoris. Appl Microbiol Biotechnol. 2004;63(4):418–421. doi: 10.1007/s00253-003-1361-0
  23. Wang Q, Li L, Chen M, et al. Construction of a novel system for cell surface display of heterologous proteins on Pichia pastoris. Biotechnol Lett. 2007;29(10):1561–1566. doi: 10.1007/s10529-007-9430-6
  24. Zhang L, Liang S, Zhou X, et al. Screening for glycosylphosphatidylinositol-modified cell wall proteins in Pichia pastoris and their recombinant expression on the cell surface. Appl Environ Microbiol. 2013;79(18):5519–5526. doi: 10.1128/AEM.00824-13
  25. Yang J, Huang K, Xu X, et al. Cell surface display of Thermomyces lanuginosus lipase in Pichia pastoris. Front Bioeng Biotechnol. 2020;8:544058. doi: 10.3389/fbioe.2020.544058
  26. Matsuda T, Cepko CL. Electroporation and RNA interference in the rodent retina in vivo and in vitro. PNAS USA. 2004;101(1):16–22. doi: 10.1073/pnas.2235688100
  27. Wu S, Letchworth GJ. High efficiency transformation by electroporation of Pichia pastoris pretreated with lithium acetate and dithiothreitol. Biotechniques. 2004;36(1):152–154. doi: 10.2144/04361DD02
  28. Maniatis T, Frich E, Sembruk Dzh. Metody geneticheskoj inzhenerii. Molekulyarnoe klonirovanie. Moscow: Mir, 1984. (In Russ.)
  29. graphpad.com [Internet]. GraphPad Prism software [cited 2022 Oct 10]. Available at: https://www.graphpad.com/
  30. Lipke PN, Kurjan J. Sexual agglutination in budding yeasts: structure, function, and regulation of adhesion glycoproteins. Microbiol Rev. 1992;56(1):180–194. doi: 10.1128/mr.56.1.180-194.1992

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of the plasmids used in the work. a — plasmid with the eGFP reporter gene; b — obtained plasmids with the eGFP gene and cell wall protein genes. 5'AOX1 — AOX1 gene promoter; α-factor — yeast alpha factor; PTEF1 — yeast promoter of the TEF1 gene; PEM7 — bacterial promoter; CYC1 TT — terminator region of the yeast CYC1 gene; Zeocin — zeocin resistance gene; pUC ori — origin replications; AOX1 TT — transcription termination region of the AOX1 gene; eGFP — reporter protein gene; ScAGα1l (long), ScAGα1, KpCW51, KpCW61 — cell wall proteins; XhoI, XbaI, AgeI — restriction enzyme recognition sites

Download (171KB)
3. Fig. 2. Electrophoregram of PCR products with primers to the genes ScAGa1long, ScAGa1, KpCW51, KpCW61. M — marker NL001 (Eurogene, Russia); 1 — ScAGa1long (expected fragment — 1421 bp), 2 — ScAGa1 (expected fragment — 985 bp), 3 — KpCW51 (expected fragment — 612 bp), 4 — KpCW61 (expected fragment — 171 bp)

Download (237KB)
4. Fig. 3. Electrophoregram of PCR products on a matrix of chromosomal DNA of yeast transformants with the ScAGα1long, ScAGα1, KpCW51, KpCW61 genes in the same reading frame with the eGFP reporter protein gene using reverse primers to the corresponding cell wall protein genes and a forward primer to the eGFP protein gene (1–3) or primer to the fragment of the AOX1 gene (4). M — NL001 marker (Evrogen, Russia); K+ — positive controls (plasmids used to transform the original yeast strain); K– — negative controls (PCR reaction mixtures not containing DNA templates); 1 — ScAGα1long (expected fragment – 2158 bp); 2 — ScAGα1 (expected fragment — 1717 bp); 3 — KpCW51 (expected fragment — 1344 bp), 4 — KpCW61 (expected fragment — 1225 bp)

Download (256KB)
5. Fig. 4. Confocal microscopy of obtained strains with eGFP reporter protein. Cells of the original strain K. phaffii X-33 were used as a control variant (K–)

Download (219KB)
6. Fig. 5. Cells fluorescence with the eGFP protein (a) and dye-labeled Cy3 antibodies to the eGFP protein (b). Data are presented with standard error of the mean. K– — original strain X-33

Download (84KB)

Copyright (c) 2022 Tsygankov M.A., Rumyantsev A.M., Makeeva A.S., Padkina M.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies