Ecological genetics of Adalia beetles: variability and symbiotic bacteria in european populations of the ten-spot ladybird beetle Adalia decempunctata

Cover Page

Cite item

Abstract

Background. Adalia decempunctata L. (Coleoptera: Coccinellidae) — ten-spot ladybird beetle, widespread morphologically variable Palearctic species.

Materials and methods. DNA polymorphism and infection with Wolbachia, Spiroplasma and Rickettsia symbiotic bacteria were investigated.

Results. Eight different haplotypes of the mitochondrial COI gene, seven of which were previously unknown, were found in 92 A. decempunctata individuals from nine European collection places: Prague, Rome, Florence, Hamburg, Paris, Stockholm, Moscow, Feodosia and Yalta. A. decempunctata is less variable in mtDNA compared to A. bipunctata. Symbiotic bacteria Wolbachia and Spiroplasma were not detected. Only Rickettsia infestation was found in A. decempunctata specimens, gathered in Stockholm and Feodosia. Rickettsia from A. decempunctata from Feodosia and Stockholm differ by 0.5% in gltA gene. Rickettsia from A. decempunctata from Feodosia is clustered with Rickettsia from A. bipunctata and Coccinella sp. based on the analysis of the gltA gene.

Conclusion: Three of the eight mtDNA haplotypes are present in the A. decempunctata gene pool from geographically distant habitats. A small amount of nucleotide substitutions between Rickettsia from A. decempunctata and A. bipunctata suggests a single origin of the symbiont in the ladybirds of the genus Adalia, the results do not exclude subsequent horizontal transfers between individuals of both species.

About the authors

Elena V. Shaikevich

Vavilov Institute of General genetics

Author for correspondence.
Email: elenashaikevich@mail.ru
ORCID iD: 0000-0002-6504-5547
SPIN-code: 4746-3067

Doctor of Science, Main Researcher, Laboratory of Insect Genetics

Russian Federation, 3, Gubkin street, Moscow, 119991

Ilya A. Zakharov

Vavilov Institute of General genetics

Email: iaz34@mail.ru

Doctor of Science, Main Researcher, Laboratory of Insect Genetics

Russian Federation, 3, Gubkin street, Moscow, 119991

Alois Honek

Crop Research Institute

Email: honek@vurv.cz

Doctor of Science, Main Researcher

Czech Republic, 161 06 Czech Republic, Prague 6 – Ruzyně, Drnovská, 507. 

References

  1. Добржанский Ф.Г. Географическая и индивидуальная изменчивость Adalia bipunctata L. и Adalia decempunctata L. (Coleoptera, Coccinellidae) // Русское энтомологическое обозрение. – 1924. – Т. 18. – № 4. – С. 201–212. [Dobzhansky T. Über geographische und individuelle Variabilität von Adalia bipunctata und A. decempunctata. Russk Entomol Obozrenie. 1924;18(4):201-211. (In Russ.)]
  2. Лус Я.Я. О наследовании окраски и рисунка у божьих коровок Adalia bipunсtata L. и Adalia decempunctata L. // Изв. Бюро генетики АН СССР. – 1928. – № 6. – С. 89–163. [Lus YaYa. On the inheritance of color and pattern in lady beetles Adalia bipunctata L. and Adalia decempunctata L. Izv. Byuro genetiki AN SSSR. 1928;(6):89-163. (In Russ.)]
  3. Majerus ME. Ladybirds. London: Harper Collins; 1994. 367 p.
  4. Schulenburg JH, Hurst GD, Tetzlaff D, et al. History of infection with different male-killing bacteria in the two-spot ladybird beetle Adalia bipunctata revealed through mitochondrial DNA sequence analysis. Genetics. 2002;160(3):1075-1086.
  5. Jiggins FM, Tinsley MC. An ancient mitochondrial polymorphism in Adalia bipunctata linked to a sex-ratio-distorting bacterium. Genetics. 2005;171(3):1115-1124. https://doi.org/10.1534/genetics.105.046342.
  6. Захаров И.А., Шайкевич Е.В. Полиморфизм мтДНК в петербургской популяции Adalia bipunctata и его связь с зараженностью симбиотической бактерией Spiroplasma // Экологическая генетика. – 2011. – Т. 9. – № 1. – C. 27–31. [Zakharov IA, Shaikevich EV. An mtDNA polymorphism in the St. Petersburg population of Adalia bipunctata and its correlation with infection by the symbiotic bacterium Spiroplasma. Ecological genetics. 2011;9(1):27-31. (In Russ.)]. https://doi.org/10.1134/S207905971202013X.
  7. Шайкевич Е.В., Ившина Е.В., Захаров И.А. Полиморфизм митохондриальной ДНК и распространение цитоплазматических симбионтов в популяциях двуточечной божьей коровки Adalia bipunctata // Генетика. – 2012. – T. 48. – № 5. – C. 666–671. [Shaikevich EV, Ivshina EV, Zakharov IA. Polymorphism of mtDNA and distribution of cytoplasmic symbionts in populations of the two-spot ladybird beetle Adalia bipunctata. Russian Journal of Genetics. 2012;48(5):567-571. (In Russ.)]
  8. Hilgenboecker K, Hammerstein P, Schlattmann P, et al. How many species are infected with Wolbachia? – A statistical analysis of current data. FEMS Microbiol Lett. 2008;281(2):215-220. https://doi.org/10.1111/j.1574-6968.2008.01110.x.
  9. Elnagdy S, Messing S, Majerus ME. Two strains of male-killing Wolbachia in a ladybird, Coccinella undecimpunctata, from a hot climate. PLoS ONE. 2013;8(1): e54218. https://doi.org/10.1371/journal.pone.0054218.
  10. Von der Schulenburg JH, Habig M, Sloggett JJ, et al. Incidence of male-killing Rickettsia spp. (alpha-proteobacteria) in the ten-spot ladybird beetle Adalia decempunctata L. (Coleoptera: Coccinellidae). Appl Environ Microbiol. 2001;67(1):270-277. https://doi.org/10.1128/AEM.67.1.270-277.2001.
  11. Zakharov IA, Shaikevich EV. The Stockholm populations of Adalia bipunctata (L.) (Coleoptera: Coccinellidae) – a case of extreme female-biased population sex ratio. Hereditas. 2001;134(3):263-266. https://doi.org/10.1111/j.1601-5223.2001.00263.x.
  12. Weinert LA, Tinsley MC, Temperley M, Jiggins FM. Are we underestimating the diversity and incidence of insect bacterial symbionts? A case study in ladybird beetles. Biol Lett. 2007;3(6):678-681. https://doi.org/10.1098/rsbl.2007.0373.
  13. Van Kuppeveld FJ, van der Logt JT, Angulo AF, et al. Genus- and species-specific identification of mycoplasmas by 16S rRNA amplification. Appl Environ Microbiol. 1992;58(8):2606-2615.
  14. Braig HR, Zhou W, Dobson SL, O’Neill SL. Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia. J Bacteriol. 1998;180(9):2373-2378.
  15. Porter CH, Collins FH. Species-diagnostic differences in a ribosomal DNA internal transcribed spacer from the sibling species Anopheles freeborni and Anopheles hermsi (Diptera: Culicidae). Am J Trop Med Hyg. 1991;45(2):271-279. https://doi.org/10.4269/ajtmh.1991.45.271.
  16. Tamura K, Stecher G, Peterson D. et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725-2729. https://doi.org/10.1093/molbev/mst197.
  17. Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25(11):1451-1452. https://doi.org/ 10.1093/bioinformatics/btp187.
  18. Bandelt HJ, Forster P, Röhl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. 1999;16(1):37-48. https://doi.org/10.1093/oxfordjournals.molbev.a026036.
  19. Животовский Л.А. Показатель внутрипопуляционного разнообразия // Журнал общей биологии. – 1980. – Т. 41. – № 6. – С. 828-836. [Zhivotovskiy LA. Pokazatel’ vnutripopulyatsionnogo raznoobraziya. Journal of general biology. 1980;41(6): 828-836. (In Russ.)]
  20. Токарев Ю.С., Юдина М.А., Малыш Ю.М., и др. Встречаемость эндосимбиотической бактерии рода Wolbachia в природных популяциях Ostrinia nubilalis и Ostrinia scapulalis (Lepidoptera: Pyraloidea: Crambidae) на юго-западе России // Экологическая генетика. – 2017. – Т. 15. – № 1. – С. 44–49. [Tokarev YuS, Yudina MA, Malysh YuM, et al. Prevalence rates of Wolbachia endosymbiotic bacterium in natural populations of Ostrinia Nubilalis and Ostrinia Scapulalis (Lepidoptera: Pyraloidea: Crambidae) in South-Western Russia. Ecological genetics. 2017;15(1):44-49. (In Russ.)]. https://doi.org/10.17816/ecogen15144-49.
  21. Юдина М.А., Быков Р.А., Котти Б.К., и др. Наследуемые бактерии рода Wolbachia в популяциях блох (Insecta: Siphonaptera) // Журнал общей биологии. – 2018. – Т. 79. – № 3. – С. 237–246. [Yudina MA, Bykov RA, Kotti BK, et al. Wolbachia infection in flea populations (Insecta: Siphonaptera). Journal of general biology. 2018;79(3):237-246. (In Russ.)]. https://doi.org/10.7868/S0044459618030053.
  22. Bykov RА, Yudina MA, Gruntenko NE, et al. Prevalence and genetic diversity of Wolbachia endosymbiont and mtDNA in Palearctic populations of Drosophila melanogaster. BMC Evol Biol. 2019;19(Suppl 1):48. https://doi.org/10.1186/s12862-019-1372-9.
  23. Haag-Liautard C, Coffey N, Houle D. et al. Direct estimation of the mitochondrial DNA mutation rate in Drosophila melanogaster. PLoS Biol. 2008;6(8): e204. https://doi.org/10.1371/journal.pbio.0060204.
  24. Elnagdy S, Majerus ME, Handley LJ. The value of an egg: resource reallocation in ladybirds (Coleoptera: Coccinellidae) infected with male-killing bacteria. J Evol Biol. 2011;24(10):2164-2172. https://doi.org/10.1111/j.1420-9101.2011.02346.x.
  25. Kajtoch Ł, Kotásková N. Current state of knowledge on Wolbachia infection among Coleoptera: a systematic review. Peer J. 2018;6: e4471. https://doi.org/10.7717/peerj.4471.
  26. Nakamura K, Ueno H, Miura K. Prevalence of inherited male-killing microorganisms in japanese population of ladybird beetle Harmonia axyridis (Coleoptera: Coccinellidae). Annals of the Entomological Society of America. 2005;98(1):96-99. https://doi.org/10.1603/0013-8746(2005)098[0096: POIMMI]2.0.CO.
  27. Goryacheva I, Blekhman A, Andrianov B. et al. Spiroplasma infection in Harmonia axyridis – Diversity and multiple infection. PLoS One. 2018;13(5): e0198190. https://doi.org/10.1371/journal.pone.0198190.
  28. Weinert LA, Werren JH, Aebi A. et al. Evolution and diversity of Rickettsia bacteria. BMC Biol. 2009;7:6. https://doi.org/10.1186/1741-7007-7-6.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Intraspecific polymorphism of mtDNA haplotypes of A. decempunctata. Eight variable haplotypes are represented on the network in proportion to their occurrence in the population

Download (16KB)
3. Fig. 2. Phylogenetic tree of Rickettsia based on gltA gene sequences. Hosts of the intracellular symbiotic bacteria Rickettsia and the places of their collection are indicated. The sequences obtained in this work are marked with black diamonds. Other sequences are selected from GenBank for comparison, registration numbers are given. Rickettsia from Ixodes colasbelcouri was used as an outgroup

Download (50KB)

Copyright (c) 2019 Shaikevich E.V., Zakharov I.A., Honek A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies