Modern approach of structuring the variety diversity of the naked and covered forms of cultural oats (Avena sativa L.)

Cover Page

Cite item

Abstract

Structuring and phenotyping genetic diversity is an important aspect of the work with breeding sources and materials.

In the Introduction, the authors pointed out the role of N.I. Vavilov’s scientific foresight in defining the topical trend in researching the genetic diversity of a crop, particularly the analysis of its biochemical composition. As the target of their research, the authors chose biochemical characters identifiable in the process of metabolomic analysis conducted by means of gas chromatography with mass spectrometry.

 Materials and methods. The object was the grain of naked and covered forms of common oat (Avena sativa L.) from the collection held by the Oat, Rye and Barley Genetic Resources Department of VIR. The analysis of oil fatty acid content and metabolomic research were performed using the method of gas chromatography with mass spectrometry on the chromatograph Agilent 6850 (USA).

Results. The obtained metabolomic spectra which reflected the metabolomic status of genotypes of various ecogeographic origin were compared among themselves using statistical (principal component) analysis methods. The results of the comparison are discussed by referring to the most important groups of metabolites significant for forming the traits of resistance to stressors as well as the characters related to food qualities of grain products. Special attention has been paid to biologically active compounds determining the functional value of the products for human nutrition: the sum of phenolics in covered forms is five times higher than that in naked ones and the content of glycine in covered forms is five times higher than in naked grain, with a similar proportion in the content of organic acids, sugars, etc.

Conclusion. Differences between metabolomic profiles of naked and covered forms have been detected and statistically verified. Accessions with the most optimal nutritional composition have been identified for food purposes and for the development of resistance to biotic and abiotic environmental stresses.

About the authors

Igor G. Loskutov

Federal Research Center “N.I. Vavilov All-Russian Institute of Plant Genetic Resources”; St. Petersburg State University

Author for correspondence.
Email: i.loskutov@vir.nw.ru
ORCID iD: 0000-0002-9250-7225
SPIN-code: 2715-2082
Scopus Author ID: 8619012600
ResearcherId: D-5238-2013

Doctor of Biological Sciences, Chief Researcher, Acting Head of the Department of Genetic Resources of Oats, Rye, Barley; Professor, Department of Agrochemistry

Russian Federation, Saint Petersburg

Tatyana V. Shelenga

Federal Research Center “N.I. Vavilov All-Russian Institute of Plant Genetic Resources”

Email: tatianashelenga@yandex.ru

Candidate of Biological Sciences, Leading Researcher of the Department of Biochemistry and Molecular Biology

Russian Federation, Saint Petersburg

Alexey V. Konarev

Federal Research Center “N.I. Vavilov All-Russian Institute of Plant Genetic Resources”

Email: a.konarev@vir.nw.ru

Doctor of Biological Sciences, Professor, Acting Head of the Department of Biochemistry and Molecular Biology

Russian Federation, Saint Petersburg

Yulia I. Vargach

All-Russian Institute of Horticulture and Nursery

Email: ulvargach@gmail.com

Candidate of Agricultural Sciences, Junior Researcher, Gene Pool Department

Russian Federation, Moscow

Elizaveta A. Porokhovinova

Federal Research Center N.I. Vavilov Institute of Plant Genetic Resources (VIR)

Email: e.porohovinova@mail.ru
SPIN-code: 5033-3263

Candidate of Biological Sciences, Senior Researcher, Department of Genetic Resources of Oilseeds and Spinning Crops

Russian Federation, Saint Petersburg

Elena V. Blinova

Federal Research Center “N.I. Vavilov All-Russian Institute of Plant Genetic Resources”

Email: i.loskutov@vir.nw.ru

Candidate of Agricultural Sciences, Senior Researcher, Department of Genetic Resources of Oats, Rye, Barley

Russian Federation, Saint Petersburg

Alexander A. Gnutikov

Federal Research Center “N.I. Vavilov All-Russian Institute of Plant Genetic Resources”

Email: alexandr2911@yandex.ru

Candidate of Agricultural Sciences, Senior Researcher, Department of Genetic Resources of Oats, Rye, Barley

Russian Federation, Saint Petersburg

Alexander V. Rodionov

V.L. Komarov Botanical Institute RAS; St. Petersburg State University

Email: avrodionov@mail.ru

Professor, Chief Researcher, Acting Head of the Laboratory of Biosystematics and Cytology; Professor

Russian Federation, Saint Petersburg

References

  1. Зеленская Я.Г., Лоскутов И.Г., Губарева Н.К., и др. Характеристика староместных форм овса посевного (Аvena sativa L.) из коллекции ВИР по полиморфизму авенина // Аграрная Россия. – 2004. – № 6. – С. 50–58. [Zelenskaya YaG, Loskutov IG, Gubareva NK, et al. Characteristic landraces of oat (Avena sativa L.) from VIR collection for avenins polymorphism. Agricultural Russia. 2004;(6):50-58. (In Russ.)]
  2. Вишнякова М.А. Милая и прекрасная Леночка. – СПб.: Серебряный век, 2007. – 150 с. [Vishhyakova MA. Milaya i prekrasnaya Lenochka. Saint Petersburg: Serebryanyy vek; 2007. 150 р. (In Russ.)]
  3. Лоскутов И.Г. История мировой коллекции генетических ресурсов растений в России. – СПб.: ГНЦ РФ ВИР, 2009. – 292 с. [Loskutov IG. The history of the world collection of plant genetic resources in Russia. Saint Petersburg: State scientific center of the Russian Federation all-Russian scientific center. – research. in-t of crop production. N.I. Vavilov; 2009. 292 p. (In Russ.)]
  4. Конарев А.В. Всероссийский НИИ растениеводства и его вклад в развитие сельскохозяйственной науки и селекции страны // Сельскохозяйственная биология. – 1994. – Т. 29. – № 3. – С. 3–31. [Konarev AV. Vserossiyskiy NII rasteniyevodstva i ego vklad v razvitiye sel’skokhozyaystvennoy nauki i selektsii strany. Soviet agricultural biology. 1994;29(3):3-31. (In Russ.)]
  5. Вавилов Н.И. Селекция как наука // Теоретические основы селекции растений. Т. I. – М.; Л.: Колос, ВИР, 1935. – C. 1–14. [Vavilov NI. Plant breeding as a science. In: Theoretical basis of plant breeding. Vol. I. Moscow; Leningrad: Kolos, VIR; 1935. P. 1-14. (In Russ.)]
  6. Loskutov IG, Shelenga TV, Konarev AV, et al. The metabolomic approach to the comparative analysis of wild and cultivated species of oats (Avena L.). Rus J Genet Appl Res. 2017;7(5):501-508. https://doi.org/10.1134/s2079059717050136.
  7. Лоскутов И.Г., Шеленга Т.В., Конарев А.В., и др. Биохимические аспекты взаимоотношений грибов и растений на примере фузариоза овса // Сельскохозяйственная биология. – 2019. – Т. 54. – № 3. – С. 575–588. [Loskutov IG, Shelenga TV, Konarev AV, et al. Biochemical aspects of interrelations between fungi and plants in the case study of Fusarium head blight in oats. Soviet agricultural biology. 2019;54(3):575-588. (In Russ.)]. doi: 10.15389/agrobiology.2019.3.575rus.
  8. Лохов П.Г., Арчаков А.И. Масс-спектрометрические методы в метаболомике // Биомедицинская химия. – 2008. – Т. 54. – № 5. – С. 497–511. [Lokhov PG, Archakov AI. Mass-spectrometric methods in metabolomics. Biomed Chem. 2008;54(5):497-511. (In Russ.)]
  9. Shulaev V, Cortes D, Miller G, et al. Metabolomics for plant stress response. Physiologia Рlantarum. 2008;132(2):199-208. https://doi.org/10.1111/j.1399-3054.2007.01025.x.
  10. Hollywood K, Brison DR, Goodacre R. Metabolomics: current technologies and future trends. Proteomics. 2006;6(17):4716-4723. https://doi.org/10.1002/pmic.200600106.
  11. Shulaev V. Metabolomics technology and bioinformatics. Brief Bioinform. 2006;7(2):128-139. https://doi.org/10.1093/bib/bbl012.
  12. Harrigan GG, Brackett DJ, Boros LG. Medicinal chemistry, metabolic profiling and drug target discovery: a role for metabolic profiling in reverse pharmacology and chemical genetics. Mini Rev Med Chem. 2005;5(1):13-20. https://doi.org/10.2174/1389557053402800.
  13. Афонников Д.А., Миронова В.В. Системная биология // Вавиловский журнал генетики и селекции. – 2014. – Т. 18. – № 1. – С. 175–192. [Afonnikov DA, Mironova VV. Systems biology. Vavilov journal of genetics and breeding. 2014;18(1): 175-192. (In Russ.)]
  14. Schauer N, Fernie AR. Plant metabolomics: towards biological function and mechanism. Trends Plant Sci. 2006;11(10):508-516. https://doi.org/10.1016/j.tplants.2006.08.007.
  15. Langridge P, Fleury D. Making the most of ‘omics’ for crop breeding. Trends Biotechnol. 2011;29(1):33-40. https://doi.org/10.1016/j.tibtech.2010.09.006.
  16. Balmer D, Flors V, Glauser G, Mauch-Mani B. Metabolomics of cereals under biotic stress: current knowledge and techniques. Front Plant Sci. 2013;4:82. https://doi.org/10.3389/fpls.2013.00082.
  17. Смоликова Г.Н., Шаварда А.Л., Алексейчук И.В., и др. Mетаболомный подход к оценке сортовой специфичности семян Brassica napus L. // Вавиловский журнал генетики и селекции. – 2015. – Т. 19. – № 1. – С. 121–127. [Smolikova GN, Shavarda AL, Alekseichuk IV, et al. Metabolic approach to assessing the varietal specificity of seeds of Brassica napus L. Vavilov journal of genetics and breeding. 2015;19(1):121-127. (In Russ.)]
  18. Žilić S, Šukalović VH, Dodig D, et al. Antioxidant activity of small grain cereals caused by phenolics and lipid soluble antioxidants. J Cereal Sci. 2011;54(3):417-424. https://doi.org/10.1016/j.jcs.2011.08.006.
  19. Björck I, Östman E, Kristensen M, et al. Cereal grains for nutrition and health benefits: Overview of results from in vitro, animal and human studies in the Healthgrain project. Trends Food Sci Technol. 2012;25(2): 87-100. https://doi.org/10.1016/j.tifs.2011.11.005.
  20. Khakimov B, Bak S, Engelsen SB. High-throughput cereal metabolomics: current analytical technologies, challenges and perspectives. J Cereal Sci. 2014;59(3): 393-418. https://doi.org/10.1016/j.jcs.2013.10.002.
  21. Kokubo Y, Nishizaka M, Ube N, et al. Distribution of the tryptophan pathway-derived defensive secondary metabolites gramine and benzoxazinones in Poaceae. Biosci Biotechnol Biochem. 2017;81(3):431-440. https://doi.org/10.1080/09168451.2016.1256758.
  22. Fernie AR, Schauer N. Metabolomics-assisted breeding: a viable option for crop improvement? Trends Genet. 2009;25(1):39-48. https://doi.org/10.1016/j.tig.2008.10.010.
  23. Шеленга Т.В., Соловьева А.Е, Шаварда А.Л., и др. Исследование метаболома культур коллекции ВИР им. Н.И. Вавилова // Тезисы докладов международной научной конференции, посвященной 120-летию ВИР. – СПб., 2014. – С. 98. [Shelenga TV, Solov’yeva AE, Shavarda AL, et al. Research of metabolom of crops from N.I. Vavilov’s VIR collection. (Conference proceedings) Tezisy dokladov mezhdunarodnoy nauchnoy konferentsii, posvyashchennoy 120-letiyu VIR. Saint Petersburg; 2014. P. 98. (In Russ.)]
  24. Родионова Н.А., Солдатов В.Н., Мережко В.Е., и др. Овес. Культурная флора. Т. 2. Ч. 3. / Под ред. В.Д. Кобылянского, В.Н. Солдатова. – М.: Колос, 1994. – 367 с. [Rodionova NA, Soldatov VN, Merezhko VN, et al. Cultivated flora. Oats (Kulturnaya flora. Oves). Vol. 2, Part 3. Ed by V.D. Kobylyansky, V.N. Soldatov. Moscow: Kolos; 1994. 367 p. (In Russ.)]
  25. Лоскутов И.Г. Овес (Avena L.). Распространение, систематика, эволюция и селекционная ценность. – СПб.: ВИР, 2007. – 336 c. [Loskutov IG. Oat (Avena L.). Distribution, taxonomy, evolution and breeding value. Saint Petersburg: VIR; 2007. 336 p. (In Russ.)]
  26. Лоскутов И.Г. Разнообразие голозерных форм ячменя и овса и его использование в селекции // Труды по прикладной ботанике, генетике и селекции. – 2009. – Т. 166. – С. 173–177. [Loskutov IG. Raznoobraziye golozernykh form yachmenya i ovsa i ego ispol’zovaniye v selektsii. Works on applied botany, genetics and plant breeding. 2009;166:173-177. (In Russ.)]
  27. Лоскутов И.Г., Ковалева О.Н., Блинова Е.В. Методические указания по изучению и сохранению мировой коллекции ячменя и овса. Изд. 4-е, доп. и перераб. – СПб.: ВИР, 2012. – 63 с. [Loskutov IG, Kovaleva ON, Blinova EV. Metodicheskiye ukazaniya po izucheniyu i sokhraneniyu mirovoy kollektsii yachmenya i ovsa. 4th revised and updated. Saint Petersburg: VIR; 2012. 63 р. (In Russ.)]
  28. StatSoft Inc. Electronic Statistics Textbook. Tulsa, OK: StatSoft; 2013. Available from: http://www.statsoft.com/textbook/.
  29. Section 20.4. The metabolism of glucose 6-phosphate by the pentose phosphate pathway is coordinated with glycolysis. In: Berg JM, Tymoczko JL, Stryer L. Biochemistry. 5th ed. New York; 2002. Available from: https://www.ncbi.nlm.nih.gov/books/NBK22590/.
  30. Khakimov B, Jespersen BM, Engelsen SB. Comprehensive and comparative metabolomic profiling of wheat, barley, oat and rye using gas chromatography-mass spectrometry and advanced chemometrics. Foods. 2014;3(4): 569-585. https://doi.org/10.3390/foods3040569.
  31. Bailey PD, Bryans JS. Chiral synthesis of 5-hydroxy-(L)-pipecolic acids from (L)-glutamic acid. Tetrahedron Lett. 1988;29(18):2231-2234. https://doi.org/10.1016/s0040-4039(00)86719-2.
  32. Abeysekara S, Swaminathan S, Desai N, et al. The plant immunity inducer pipecolic acid accumulates in the xylem sap and leaves of soybean seedlings following Fusarium virguliforme infection. Plant Sci. 2016;243: 105-14. https://doi.org/10.1016/j.plantsci.2015.11.008.
  33. Sánchez-Martín JA, Heald JI, Kingston-Smith AL, et al. A metabolomic study in oats (Avena sativa) highlights a drought tolerance mechanism based upon salicylate signaling pathways and the modulation of carbon, antioxidant and photo-oxidative metabolism. Plant Cell Environ. 2015;38(7):1434-1452. https://doi.org/ 10.1111/pce.12501.
  34. Schenck CA, Maeda HA. Tyrosine biosynthesis, metabolism, and catabolism in plants. Phytochem. 2018;149:82-102. https://doi.org/10.1016/j.phytochem.2018.02.003.
  35. Bhandari K, Nayyar H. Low temperature stress in plants: an overview of roles of cryoprotectants in defense. In: Physiological mechanisms and adaptation strategies in plants under changing environment. New York: Springer; 2014. P. 193-265. https://doi.org/10.1007/978-1-4614-8591-9_9.
  36. Blanch M, Alvarez I, Sanchez-Ballesta MT, et al. Trisaccharides isomers, galactinol and osmotic imbalance associated with CO2 stress in strawberries. Postharvest Biol Technol. 2017;131:84-91. https://doi.org/10.1016/j.postharvbio.2017.05.008.
  37. Kaur J, Bhatti DS, Goyal M. Influence of copper application on forage yield and quality of oats fodder in copper deficient soils. Indian J Anim Nutr. 2015;32:290-294.
  38. Bernardi J, Stagnati L, Lucini L, et al. Phenolic profile and susceptibility to Fusarium infection of pigmented maize cultivars. Front Plant Sci. 2018;9:1189. https://doi.org/10.3389/fpls.2018.01189.
  39. Pieterse CM, Poelman EH, van Wees SC, Dicke M. Induced plant responses to microbes and insects. Front Plant Sci. 2013;4:475. https://doi.org/10.3389/fpls.2013.00475.
  40. Seki M, Narusaka M, Ishida J, et al. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNAmicroarray. Plant J. 2002;31(3):279-292. https://doi.org/10.1046/j. 1365-313x.2002.01359.x.
  41. Vidigal DS, Willems L, Arkel J, et al. Galactinol as marker for seed longevity. Plant Sci. 2016;246:112-118. https://doi.org/10.1016/j.plantsci.2016.02.015.
  42. Lahiri A, Chatterjee MA, Ghosh K, Majee M. Diversification and evolution of L-myo-inositol 1-phosphate synthase. FEBS Lett. 2003;553(1-2):3-10. https://doi.org/10.1016/s0014-5793(03)00974-8.
  43. Шарова Е.И. Антиоксиданты растений. – СПб.: изд-во СПб. ГУ, 2016. – C. 102–118. [Sharova EI. Antioxidants of plants. Saint Petersburg: izd-vo SPb. GU. 2016. Р. 102–118. (In Russ.)]
  44. Cuperlovic-Culf M, Rajagopalan NK, Tulpan D, Loewen MC. Metabolomics and cheminformatics analysis of antifungal function of plant metabolites. Metabolites. 2016;6(4):31. https://doi.org/10.3390/metabo6040031.
  45. Yandeau-Nelson MD, Lauter N, Zabotina OA. Advances in metabolomic applications in plant genetics and breeding. CAB Rev. 2015;10(40):1-17. https://doi.org/10.1079/pavsnnr201510040.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Major groups of metabolites of grains of covered and naked oat in percentage (±0.95 confidence interval) of the total content of all substances identified

Download (108KB)
3. Fig. 2. Distribution of the studied compounds and accessions of oat in the two-PC system: a – substances, PC 1 and 2; b – accessions, PC 1 and 2; c – substances, PC 3 and 4; d – accessions, PC 3 and 4

Download (209KB)
4. Fig. 3. Quantity of compounds typical for metabolic profiles of grains of naked and covered forms of Avena sativa L.

Download (128KB)

Copyright (c) 2020 Loskutov I.G., Shelenga T.V., Konarev A.V., Vargach Y.I., Porokhovinova E.A., Blinova E.V., Gnutikov A.A., Rodionov A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies