Analysis of epitope distribution of arabinogalactan protein-extensins in pea (Pisum Sativum) nodules of wild-type and mutants impaired in infection thread growth

Cover Page

Cite item

Full Text

Abstract

Background. During the colonization of root and nodule tissues of legumes by rhizobia, bacterial cells are immersed in a plant extracellular matrix which includes arabinogalactan protein-extensins (AGPE).

Materials and methods. Immunogold electron microscopy with monoclonal antibodies MAC204 and MAC236 was used to analyse the distribution and abundance of epitopes of AGPE in wild-type and symbiotically defective pea mutants.

Results. In the nodules of the wild-type line SGE, both AGPE epitopes were detected to the same extent in the matrix of infection threads and infection droplets. In the nodules of the mutant line SGEFix−-1 (sym40), the level of labelling by MAC204 was significantly higher than with SGE in both infection threads and infection droplets, but the level of labelling by MAC236 was only increased in the infection droplets. In the mutant line SGEFix−-2 (sym33-3), a relatively high level of both epitopes was observed among all analysed genotypes. The double mutant line RBT3 (sym33-3, sym40) showed an intermediate level of labelling for both epitopes in infection threads compared with the parental mutants. In SGEFix−-1, an abnormal distribution of both epitopes was observed in the intercellular space matrix. The MAC204 epitope was found in the cell walls of SGEFix−-1 and in the infection thread walls of SGEFix−-2, whereas in RBT3 this epitope was detected in both types of walls.

Conclusions. The sym33-3 and sym40 mutations have different effects on the accumulation of AGPE epitopes recognised by MAC204 and MAC236. This indicates that both the Sym33 and the Sym40 genes affect the composition of AGPE in the matrix of infection threads and infection droplets.

About the authors

Anna V. Tsyganova

All-Russia Research Institute for Agricultural Microbiology

Author for correspondence.
Email: isaakij@mail.ru
ORCID iD: 0000-0003-3505-4298
SPIN-code: 9149-5662
http://arriam.ru/departments/laboratoriya-molekulyarnoj-i-kletochnoj-biologii/

Candidate of Biological Sciences, Leading Scientist of the Laboratory of Molecular and Cellular Biology, Department of Biotechnology

Russian Federation, 196608, Saint Petersburg, Pushkin-8, Podbelsky chaussee 3

Nicholas J. Brewin

John Innes Centre

Email: nick.brewin@jic.ac.uk
ORCID iD: 0000-0001-6120-2464
https://www.jic.ac.uk/people/professor-nick-brewin/

Emeritus Fellow, Professor

United Kingdom, NR4 7UH, Norwich, Norwich Research Park

Viktor E. Tsyganov

All-Russia Research Institute for Agricultural Microbiology; Saint-Petersburg Scientific Center RAS

Email: tsyganov@arriam.spb.ru
ORCID iD: 0000-0003-3105-8689
SPIN-code: 6532-1332
http://arriam.ru/departments/laboratoriya-molekulyarnoj-i-kletochnoj-biologii/

Doctor of Biological Sciences, Head of the Laboratory of Molecular and Cellular Biology, Department of Biotechnology; Senior Scientist of Saint Petersburg Scientific Center RAS

Russian Federation, 196608, Saint Petersburg, Pushkin-8, Podbelsky chaussee 3; 199034, Saint Petersburg, Universitetskaya embankment 5

References

  1. Brewin NJ. Plant cell wall remodelling in the Rhizobium-legume symbiosis. Crit Rev Plant Sci. 2004;23(4): 293-316. https://doi.org/10. 1080/07352680490480734.
  2. Nguema-Ona E, Vicré-Gibouin M, Cannesan M-A, Driouich A. Arabinogalactan proteins in root-microbe interactions. Trends Plant Sci. 2013;18(8):440-449. https://doi.org/10. 1016/j.tplants.2013. 03. 006.
  3. Showalter AM, Basu D. Extensin and arabinogalactan-protein biosynthesis: glycosyltransferases, research challenges, and biosensors. Front Plant Sci. 2016;7:814. https://doi.org/10. 3389/fpls.2016. 00814.
  4. Bradley DJ, Wood EA, Larkins AP, et al. Isolation of monoclonal antibodies reacting with peribacteroid membranes and other components of pea root nodules containing Rhizobium leguminosarum. Planta. 1988;173(2): 149-160. https://doi.org/10. 1007/bf00403006.
  5. VandenBosch KA, Bradley DJ, Knox JP, et al. Common components of the infection thread matrix and the intercellular space identified by immunocytochemical analysis of pea nodules and uninfected roots. EMBO J. 1989;8(2):335-341. https://doi.org/10. 1002/j.1460-2075. 1989. tb03382. x.
  6. Rae AL, Bonfante-Fasolo P, Brewin NJ. Structure and growth of infection threads in the legume symbiosis with Rhizobium leguminosarum. Plant J. 1992;2(3):385-395. https://doi.org/10. 1111/j.1365-313X.1992. 00385. x.
  7. Rathbun EA, Naldrett MJ, Brewin NJ. Identification of a family of extensin-like glycoproteins in the lumen of Rhizobium-induced infection threads in pea root nodules. Mol Plant Microbe Interact. 2002;15(4): 350-359. https://doi.org/10. 1094/MPMI.2002. 15. 4. 350.
  8. Tsyganova AV, Tsyganov VE, Findlay KC, et al. Distribution of legume arabinogalactan protein-extensin (AGPE) glycoproteins in symbiotically defective pea mutants with abnormal infection threads. Cell Tissue Biol. 2009;3(1):93-102. https://doi.org/10. 1134/S1990519X09010131.
  9. Reguera M, Abreu I, Brewin NJ, et al. Borate promotes the formation of a complex between legume AGP-extensin and rhamnogalacturonan II and enhances production of Rhizobium capsular polysaccharide during infection thread development in Pisum sativum symbiotic root nodules. Plant Cell Environ. 2010;33(12):2112-2120. https://doi.org/10. 1111/j.1365-3040. 2010. 02209. x.
  10. Gucciardo S, Rathbun EA, Shanks M, et al. Epitope tagging of legume root nodule extensin modifies protein structure and crosslinking in cell walls of transformed tobacco leaves. Mol Plant Microbe Interact. 2005;18(1): 24-32. https://doi.org/10. 1094/MPMI-18-0024.
  11. Kosterin OE, Rozov SM. Mapping of the new mutation blb and the problem of integrity of linkage group I [Internet]. 1993. Available from: https://www.researchgate.net/publication/312428570_Mapping_of_the_new_mutation_blb_and_the_problem_of_integrity_of_linkage_group_I.
  12. Tsyganov VE, Morzhina EV, Stefanov SY, et al. The pea (Pisum sativum L.) genes sym33 and sym40 control infection thread formation and root nodule function. Mol Gen Genet. 1998;259(5):491-503. https://doi.org/10. 1007/s004380050840.
  13. Tsyganov VE, Borisov AY, Rozov SM, Tikhonovich IA. New symbiotic mutants of pea obtained after mutagenesis of laboratory line SGE. Pisum Genet. 1994;26:36-37.
  14. Voroshilova VA, Boesten B, Tsyganov VE, et al. Effect of mutations in Pisum sativum L. genes blocking different stages of nodule development on the expression of late symbiotic genes in Rhizobium leguminosarum bv. viciae. Mol Plant-Microbe Interact. 2001;14(4):471-476. https://doi.org/10. 1094/MPMI.2001. 14. 4. 471.
  15. Tsyganov VE, Seliverstova EV, Voroshilova VA, et al. Double mutant analysis of sequential functioning of pea (Pisum sativum L.) genes Sym13, Sym33, and Sym40 during symbiotic nodule development. Ecol Genet. 2010;8(2):3-8. https://doi.org/10. 17816/ecogen823-8.
  16. Nemankin TA. Analysis of pea (Pisum sativum L.) genetic system, controlling development of arbuscular mycorrhiza and nitrogen-fixing symbiosis. [dissertation] Saint Petersburg; 2011. 18 p. (In Russ.). Available from: http://earthpapers.net/analiz-geneticheskoy-sistemy-goroha-pisum-sativum-l-kontroliruyuschey-razvitie-arbuskulyarnoy-mikorizy-i-azotfiksiruyusch.
  17. Ovchinnikova E, Journet E-P, Chabaud M, et al. IPD3 controls the formation of nitrogen-fixing symbiosomes in pea and Medicago spp. Mol Plant-Microbe Interact. 2011;24(11):1333-1344. https://doi.org/10. 1094/MPMI-01-11-0013.
  18. Wang TL, Wood EA, Brewin NJ. Growth regulators, Rhizobium and nodulation in peas. Planta. 1982;155(4):350-355. https://doi.org/10. 1007/BF00429464.
  19. Borisov AY, Rozov SM, Tsyganov VE, et al. Sequential functioning of Sym13 and Sym31, two genes affecting symbiosome development in root nodules of pea (Pisum sativum L.). Mol Gen Genet. 1997;254(5):592-598. https://doi.org/10. 1007/s004380050456.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Immunogold labelling showing the distribution of arabinogalactan protein-extensin epitopes in thin sections from the nodules of pea wild-type SGE: a–c – МАС204; d–f – МАС236. IT – infection thread, ITW – infection thread wall, ID – infection droplet, B – bacterium, RB – releasing bacterium, Ba – bacteroid, * – newly synthesised matrix; arrows indicate gold particles. Bar: 500 nm

Download (715KB)
3. Fig. 2. Distribution of arabinogalactan protein-extensin epitopes in the nodules of pea mutant line SGEFix–-1 (sym40): a, b – МАС204; c, d – МАС236. IT – infection thread, ID – infection droplet, B – bacterium, M – mitochondrion; arrows indicate gold particles. Bar: a, b = 1 µm, c, d = 500 nm

Download (461KB)
4. Fig. 3. Distribution of arabinogalactan protein-extensin epitopes in cell walls in the nodules of pea mutant lines SGEFix–-1 (sym40) (a, b) and SGEFix–-2 (sym33-3) (c, d): a, c, d – МАС204, b – МАС236. V – vacuole, M – mitochondrion, A – amyloplast, CW – cell wall, ICS – intercellular space, IT – infection thread, ITW – infection thread wall, B – bacterium; arrows indicate gold particles. Bar: 500 nm

Download (483KB)
5. Fig. 4. Distribution of arabinogalactan protein-extensin epitopes in the nodules of pea mutant line SGEFix–-2 (sym33-3): a, b – МАС204; c, d – МАС236. IT – infection thread, ITW – infection thread wall, ID – infection droplet, B – bacterium; arrows indicate gold particles. Bar: 500 nm.

Download (499KB)
6. Fig. 5. Distribution of arabinogalactan protein-extensin epitopes in the nodules of pea double mutant line RBT3 (sym33-3, sym40): a–c – МАС204; d–f – МАС236. IT – infection thread, B – bacterium, ITW – infection thread wall, CW – cell wall, M – mitochondrion, ^ – transport vesicles with intercellular matrix; arrows indicate gold particles. Bar: 500 nm

Download (596KB)

Copyright (c) 2019 Tsyganova A.V., Brewin N., Tsyganov V.E.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies