Organization of the endoplasmic reticulum in cells of effective and ineffective pea nodules (Pisum sativum L.)

Cover Page

Cite item

Abstract

Background. The endoplasmic reticulum (ER) is the largest membrane-bound organelle, which plays an important role in the functioning of a plant cell and participates in its differentiation.

Materials and methods. Using the methods of transmission electron microscopy, the morphological features and dynamics of structural changes in the ER in symbiotic nodules of pea (Pisum sativum L.) wild-type and mutants blocked at different stages of nodule development were studied.

Results. ER developed from a network of individual tubules in meristematic cells, to a developed network of cisterns around the nucleus and plasmalemma, and a network of granular and smooth tubules accompanying infection structures in colonized and infected cells and symbiosomes in infected cells.

Conclusions. A correlation was found between the level of development of the ER network and the degree of bacteroid differentiation.

About the authors

Anna V. Tsyganova

All-Russia Research Institute for Agricultural Microbiology

Author for correspondence.
Email: isaakij@mail.ru
ORCID iD: 0000-0003-3505-4298
SPIN-code: 9149-5662
http://arriam.ru/departments/laboratoriya-molekulyarnoj-i-kletochnoj-biologii/

Candidate of Biological Sciences, Leading Scientist of the Laboratory of Molecular and Cellular Biology

Russian Federation, 3, Podbelsky highway, Pushkin, Saint-Petersburg, 196608

Viktor E. Tsyganov

All-Russia Research Institute for Agricultural Microbiology; Saint Petersburg Scientific Center RAS

Email: tsyganov@arriam.spb.ru
ORCID iD: 0000-0003-3105-8689
SPIN-code: 6532-1332
http://arriam.ru/departments/laboratoriya-molekulyarnoj-i-kletochnoj-biologii/

Doctor of Biological Sciences, Head of the Laboratory of Molecular and Cellular Biology, Department of Biotechnology; Senior Scientist of Saint Petersburg Scientific Center RAS

Russian Federation, 3, Podbelsky highway, Pushkin, Saint-Petersburg, 196608; 5, Universitetskaya Nab., St.Petersburg, 199034

References

  1. Wada M, Suetsugu N. Plant organelle positioning. Curr Opin Plant Biol. 2004;7(6):626-631. https://doi.org/10.1016/j.pbi.2004.09.005.
  2. Agrawal GK, Bourguignon J, Rolland N, et al. Plant organelle proteomics: collaborating for optimal cell function. Mass Spectrom Rev. 2011;30(5):772-853. https://doi.org/10.1002/mas.20301.
  3. Shibata Y, Shemesh T, Prinz WA, et al. Mechanisms determining the morphology of the peripheral ER. Cell. 2010;143(5):774-788. https://doi.org/10.1016/j.cell.2010.11.007.
  4. Chen J, Doyle C, Qi X, Zheng H. The endoplasmic reticulum: a social network in plant cells. J Integr Plant Biol. 2012;54(11):840-850. https://doi.org/10.1111/j.1744-7909.2012.01176.x.
  5. Griffing LR, Lin C, Perico C, et al. Plant ER geometry and dynamics: biophysical and cytoskeletal control during growth and biotic response. Protoplasma. 2017;254(1):43-56. https://doi.org/10.1007/s00709-016-0945-3.
  6. Perrine-Walker FM, Kouchi H, Ridge RW. Endoplasmic reticulum-targeted GFP reveals ER remodeling in Mesorhizobium-treated Lotus japonicus root hairs during root hair curling and infection thread formation. Protoplasma. 2014;251(4):817-826. https://doi.org/10.1007/s00709-013-0584-x.
  7. Newcomb W. A correlated light and electron microscopic study of symbiotic growth and differentiation in Pisum sativum root nodules. Can J Bot. 1976;54(18):2163-2186. https://doi.org/10.1139/b76-233.
  8. Fournier J, Teillet A, Chabaud M, et al. Remodeling of the infection chamber before infection thread formation reveals a two-step mechanism for rhizobial entry into the host legume root hair. Plant Physiol. 2015;167(4):1233-1242. https://doi.org/10.1104/pp.114.253302.
  9. MacKenzie CR, Jordan DC. Ultrastructure of root nodules formed by ineffective strains of Rhizobium meliloti. Can J Microbiol. 1974;20(5):755-758. https://doi.org/10.1139/m74-115.
  10. Hirsch AM, Bang M, Ausubel FM. Ultrastructural analysis of ineffective alfalfa nodules formed by nif::Tn5 mutants of Rhizobium meliloti. J Bacteriol. 1983;155(1):367-380.
  11. Hirsch AM, Smith CA. Effects of Rhizobium meliloti nif and fix mutants on alfalfa root nodule development. J Bacteriol. 1987;169(3):1137-1146. https://doi.org/10.1128/jb.169.3.1137-1146.1987.
  12. Gardiol AE, Truchet GL, Dazzo FB. Requirement of succinate dehydrogenase activity for symbiotic bacteroid differentiation of Rhizobium meliloti in alfalfa nodules. Appl Environ Microbiol. 1987;53(8): 1947-1950.
  13. Newcomb W, Syono K, Torrey JG. Development of an ineffective pea root nodule: morphogenesis, fine structure, and cytokinin biosynthesis. Can J Bot. 1977;55(14): 1891-1907. https://doi.org/10.1139/b77-217.
  14. Wang TL, Wood EA, Brewin NJ. Growth regulators, Rhizobium and nodulation in peas. Planta. 1982;155(4): 350-355. https://doi.org/10.1007/bf00429464.
  15. Tsyganov VE, Borisov AY, Rozov SM, Tikhonovich IA. New symbiotic mutants of pea obtained after mutagenesis of laboratory line SGE. Pisum Genetics. 1994;26:36-37.
  16. Kosterin OE, Rozov SM. Mapping of the new mutation blb and the problem of integrity of linkage group I. Pisum Genetics. 1993;25:27-31.
  17. Tsyganov VE, Morzhina EV, Stefanov SY, et al. The pea (Pisum sativum L.) genes sym33 and sym40 control infection thread formation and root nodule function. Mol Gen Genet. 1998;259(5):491-503. https://doi.org/10.1007/s004380050840.
  18. Voroshilova VA, Boesten B, Tsyganov VE, et al. Effect of mutations in Pisum sativum L. genes blocking different stages of nodule development on the expression of late symbiotic genes in Rhizobium leguminosarum bv. viciae. Mol Plant Microbe Interact. 2001;14(4):471-476. https://doi.org/10.1094/MPMI.2001.14.4.471.
  19. Serova TA, Tsyganova AV, Tsyganov VE. Early nodule senescence is activated in symbiotic mutants of pea (Pisum sativum L.) forming ineffective nodules blocked at different nodule developmental stages. Protoplasma. 2018;255(5):1443-1459. https://doi.org/10.1007/s00709-018-1246-9.
  20. Borisov AY, Rozov SM, Tsyganov VE, et al. Identification of symbiotic genes in pea (Pisum sativum L.) by means of experimental mutagenesis. Soviet Genetics. 1994;30(1):1484-1494.
  21. Неманкин Т.А. Анализ генетической системы гороха (Pisum sativum L.), контролирующей развитие арбускулярной микоризы и азотфиксирующего симбиоза: Автореф. дис. … канд. биол. наук. – СПб., 2011. – 19 с. [Nemankin TA. Analiz geneticheskoi sistemy gorokha (Pisum sativum L.), kontrolirujushei razvitie arbuskulyarnoi mikorizy i azotfiksireujushego simbioza. [dissertation abstract] Saint Petersburg; 2011. 19 p. (In Russ.)]. Доступно по: http://earthpapers.net/analiz-geneticheskoy-sistemy-goroha-pisum-sativum-l-kontroliruyuschey-razvitie-arbuskulyarnoy-mikorizy-i-azotfiksiruyusch. Ссылка активна на 14.08.2019.
  22. Ovchinnikova E, Journet EP, Chabaud M, et al. IPD3 controls the formation of nitrogen-fixing symbiosomes in pea and Medicago spp. Mol Plant Microbe Interact. 2011;24(11):1333-1344. https://doi.org/10.1094/MPMI-01-11-0013.
  23. Ivanova KA, Tsyganova AV, Brewin NJ, et al. Induction of host defences by Rhizobium during ineffective nodulation of pea (Pisum sativum L.) carrying symbiotically defective mutations sym40 (PsEFD), sym33 (PsIPD3/PsCYCLOPS) and sym42. Protoplasma. 2015;252(6):505-517. https://doi.org/10.1007/s00709-015-0780-y.
  24. Fahraeus G. The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J Gen Microbiol. 1957;16(2):374-381. https://doi.org/10.1099/00221287-16-2-374.
  25. Kijne JW, Pluvque K. Ultrastructural study of the endomembrane system in infected cells of pea and soybean root nodules. Physiol Plant Pathol. 1979;14(3):339-345. https://doi.org/10.1016/0048-4059(79)90053-5.
  26. Wang D, Griffitts J, Starker C, et al. A nodule-specific protein secretory pathway required for nitrogen-fixing symbiosis. Science. 2010;327(5969):1126-1129. https://doi.org/10.1126/science.1184096.
  27. Kitaeva AB, Demchenko KN, Tikhonovich IA, et al. Comparative analysis of the tubulin cytoskeleton organization in nodules of Medicago truncatula and Pisum sativum: bacterial release and bacteroid positioning correlate with characteristic microtubule rearrangements. New Phytol. 2016;210(1):168-183. https://doi.org/ 10.1111/nph.13792.
  28. Newcomb W, Wood SM. Fine structure of nitrogen-fixing leguminous root nodules from the Canadian Arctic. Nord J Bot. 1986;6(5):609-626. https://doi.org/10.1111/j.1756-1051.1986.tb00461.x.
  29. Safronova V, Belimov A, Sazanova A, et al. Two broad host range rhizobial strains isolated from relict legumes have various complementary effects on symbiotic parameters of co-inoculated plants. Front Microbiol. 2019;10:514. https://doi.org/10.3389/fmicb. 2019.00514.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The endoplasmic reticulum in the wild-type symbiotic nodules of P. sativum: a – cell of the meristem; b – cell of the meristem with infection threads; c – cell from the early infection zone; d – cell from the late infection zone; e – infected cell from the early nitrogen fixation zone; and f – mature infected cell from the nitrogen fixation zone. a, b, e, f – Sprint2; c, d – SGE. N – nucleus, V – vacuole, IT – infection thread, ID – infection droplet; arrows indicate profiles of the RER. Bar: 5 µm

Download (295KB)
3. Fig. 2. Distribution of the endoplasmic reticulum in infected cells of the wild-type nodules of P. sativum: a – around the nucleus; b – along the plasma membrane; c – along infection threads; d – SER network with the matrix material of infection droplets; e – around individual symbiosomes or groups of symbiosomes; and f – an extension of ER profiles in senescent cells. N – nucleus, M – mitochondrion, V – vacuole, CW – cell wall, IT – infection thread, ITW – infection thread wall, ID – infection droplet, B – bacterium, RB – releasing bacterium, Ba – bacteroid; arrows indicate RER profiles, arrowheads – SER profiles. Bar: a – 2 µm, b–f – 500 nm

Download (302KB)
4. Fig. 3. The endoplasmic reticulum in the nodules of P. sativum mutant line SGEFix–-3 (sym26): a – parallel cisternae around the nucleus; b – SER network; c – around individual symbiosomes or groups of symbiosomes; and d – an extension of RER profiles and partial ribosome loss in some cells. N – nucleus, M – mitochondrion, CW – cell wall, Ba – bacteroid; arrows indicate RER profiles, arrowheads – SER profiles. Bar: 500 nm

Download (271KB)
5. Fig. 4. The endoplasmic reticulum in the nodules of P. sativum mutant lines SGEFix–-1 (sym40) (a–c) and SGEFix–-2 (sym33-3) (d–f): a – around the vacuole and infection threads and droplets; b – around symbiosomes; c – extension and fragmentation of RER profiles with partial loss of ribosomes; d – along the plasma membrane; e – around symbiosomes; and f – SER network. M – mitochondrion, AG – Golgi apparatus, V – vacuole, CW – cell wall, IT – infection thread, ID – infection droplet, B – bacterium, Ba – bacteroid, * – symbiosome containing several bacteroids surrounded by a common symbiosome membrane; arrows indicate RER profiles, arrowheads – SER profiles. Bar: 500 nm

Download (444KB)
6. Fig. 5. The endoplasmic reticulum in the nodules of P. sativum mutant lines SGEFix–-2 (sym33-3) (a, b) and Sprint-2Fix– (sym31) (c, d): a – in a narrow layer of the cytoplasm around the nucleus and infection threads; b – along bacterial free infection droplets; and c – along the plasma membrane; d – around symbiosomes. N – nucleus, M – mitochondrion, CW – cell wall, IT – infection thread, ID – infection droplet, B – bacterium, Ba – bacteroid, * – symbiosome containing several bacteroids surrounded by a common symbiosome membrane; arrows indicate RER profiles. Bar: a, c – 1 µm, b, d – 500 nm

Download (283KB)

Copyright (c) 2019 Tsyganova A., Tsyganov V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies