The state of art and prospects for development of symbiogenetics

Cover Page

Cite item

Abstract

The modern stage of development of symbiogenetics, a biological discipline that addresses the formation of super-species genetic systems, is associated with the study of molecular mechanisms and environmental consequences of combining the hereditary factors of prokaryotes and eukaryotes into functionally integrated symbiogenomes, which, as partners lose their ability to autonomous existence, are transformed into structurally integrated hologenomes. The loss by intracellular symbionts of eukaryotes of their genetic individuality, determined by the ability to independently maintain and express the genome, representing a key step in symbiogenesis which results in the transformation of bacteria into cellular organelles. Genetic reconstruction of symbiogenesis provides the broad prospects for its artificial reproduction aimed at the synthesis of new organisms and biosystems possessing the predetermined sets of practically significant features.

About the authors

Nikolai A. Provorov

All-Russia Research Institute for Agricultural Microbiology

Author for correspondence.
Email: provorovnik@yandex.ru
ORCID iD: 0000-0001-9091-9384
SPIN-code: 4548-1255
Scopus Author ID: 6701639336

Doctor of Biology, Director 

Russian Federation, 3, Podbelsky highway, Pushkin, Saint-Petersburg, 196608

Igor A. Tikhonovich

All-Russia Research Institute for Agricultural Microbiology

Email: arriam2008@yandex.ru
ORCID iD: 0000-0001-8968-854X
SPIN-code: 6685-9419
Scopus Author ID: 6701578749
ResearcherId: C-1744-2014

Sc.D., Professor PI, Academician of RAS

Russian Federation, 3, Podbelsky highway, Pushkin, Saint-Petersburg, 196608

References

  1. Тихонович И.А., Проворов Н.А. Симбиогенетика микробно-растительных взаимодействий // Экологическая генетика. – 2003. – Т. 1. – № 1. – С. 36–46. [Tikhonovich IA, Provorov NA. Simbiogenetika mikrobno-rastitelnikh vzaimodeistviy. Ekologicheskaya Genetika. 2003;1(1):36-46. (In Russ.)]
  2. Тихонович И.А., Андронов Е.Е., Борисов А.Ю., и др. Принцип дополнительности геномов в расширении адаптационного потенциала растений // Генетика. – 2015. – Т. 51. – № 9. – С. 973–990. [Tikhono vich IA, Andronov EE, Borisov AYu, et al. The principle of genome complementarity in the enhancement of plant adaptive capacities. Russian Journal of Gene tics. 2015;51(9):831-846. (In Russ.)]. https://doi.org/10.7868/S001667581509012X.
  3. Проворов Н.А., Тихонович И.А. Надвидовые генетические системы // Журнал общей биологии. – 2014. – Т. 75. – № 4. – С. 247–260. [Provorov NA, Tikhonovich IA. Supraspecies genetic systems. Biology Bulletin Reviews. 2015;5(3): 179-189. (In Russ.)]. https://doi.org/10.1134/S2079086415030081.
  4. Tikhonovich IA, Provorov NA. From plant-microbe interactions to Symbiogenetics: a universal paradigm for the inter-species genetic integration. Annals of Applied Biology. 2009;154(3):341-350. https://doi.org/10.1111/j.1744-7348.2008.00306.x.
  5. Lo WS, Huang YY, Kuo CH. Winding paths to simplicity: genome evolution in facultative insect symbionts. FEMS Microbiology Reviews. 2016;40(6):855-74. https://doi.org/10.1093/femsre/fuw028.
  6. Nowack EC, Grossman AR. Trafficking of protein into the recently established photosyn-thetic organelles of Paulinella chromatophora. Proceeding of National Academy of Sciences USA. 2012;109(14):5340-5345. https://doi.org/10.1073/pnas.1118800109.
  7. Zilber-Rosenberg I, Rosenberg E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiology Reviews. 2008;32(3):723-735. https://doi.org/10.1111/j.1574-6976.2008.
  8. Theis KR, Dheilly NM, Klassen JL, et al. Getting the hologenome concept right: a co-evolutionary framework for hosts and their microbiomes. mSystems. 2016;1(2):e00028-16. https://doi.org/10.1128/mSystems.00028-16.
  9. Тихонович И.А., Проворов Н.А. Развитие подходов симбиогенетики для изучения изменчивости и наследственности надвидовых систем // Генетика. – 2012. – Т. 48. – № 4. – С. 437–450. [Tikhono vich IA, Provorov NA. Development of symbiogenetic approaches for studying variation and heredity of superspecies systems. Russian Journal of Genetics. 2012;48(4):357-368. (In Russ.)]. https://doi.org/10.1134/S1022795412040126.
  10. Moran NA, McCutcheon JP, Nakabachi A. Genomics and evolution of heritable bacterial symbionts. Annual Reviews in Genetics. 2008;42:165-190. https://doi.org/10.1146/annurev.genet.41.110306.130119.
  11. Проворов Н.А., Андронов Е.Е. Эволюция клубеньковых бактерий: реконструкция процессов видообразования, обусловленных перестройками генома в системе симбиоза // Микробиология. – 2016. – Т. 85. – № 2. – С. 195–206. [Provorov NA, Andronov EE. Evolution of root nodule bacteria: reconstruction of the speciation processes resulting from genomic rearrangements in a symbiotic system. Microbiology. 2016;85(2):131-139. (In Russ.)]. https://doi.org/10.7868/S0026365616020166.
  12. Проворов Н.А., Воробьев Н.И. Эволюция полезных для растений признаков у азотфиксирующих бактерий: моделирование и конструирование систем межвидового альтруизма // Прикладная биохимия и микробиология. – 2015. – Т. 51. – № 4. – С. 363–370. [Provorov NA, Vorobyov NI. Evolution of host-beneficial traits in nitrogen-fixing bacteria: modeling and construction of systems for interspecies altruism. Applied Biochemistry and Microbiology. 2015;51(4):381-387. (In Russ.)]. https://doi.org/10.7868/S0555109915040145.
  13. Проворов Н.А., Тихонович И.А., Воробьев Н.И. Симбиоз и симбиогенез. – СПб.: Информ-Навигатор, 2018. – 464 с. [Provorov NA, Tikhonovich IA, Vorobyov NI. Simbioz i simbiogenez. Saint Petersburg: Inform-Navigator; 2018. 464 p. (In Russ.)]
  14. Gross J, Bhattacharya D. Mitochondrial and plastid evolution in eukaryotes: an outsiders’ perspective. Nature Reviews in Genetics. 2009;10(7):495-505. https://doi.org/10.1038/nrg2610.
  15. Smith DR, Lee RW. A plastid without a genome: evidence from the non-photosynthetic green algal genus Polytomella Plant Physiology. 2014;164(4):1812-19. https://doi.org/10.1104/pp.113.233718.
  16. Проворов Н.А., Тихонович И.А., Воробьев Н.И. Симбиогенез как модель для реконструкции ранних этапов эволюции генома // Генетика. – 2016. – Т. 52. – № 2. – С. 137–145. [Provorov NA, Ti khonovich IA, Vorobyov NI. Symbiogenesis as a model for reconstructing the early stages of genome evolution. Russian Journal of Genetics. 2016;52(2): 117-124. (In Russ.)]. https://doi.org/10.7868/S0016675816020107.
  17. Проворов Н.А., Онищук О.П. Эволюционно-генетические основы симбиотической инженерии растений: мини-обзор // Сельскохозяйственная биология. – 2018. – Т. 53. – № 3. – С. 464–474. [Provorov NA, Onishchuk OP. Evolutionary-genetic bases for symbiotic engineering in plants. Sel’skokhozyaistvennaya Biologiya. 2018;53(3):464-474. (In Russ.)]. https://doi.org/10.15389/agrobiology.2018.3.464eng.
  18. Deusch O, Landan G, Roettger M, et al. Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor. Molecular Biology and Evolution. 2008;25(4):748-761. https://doi.org/10.1093/molbev/msn022.
  19. Georgiades K, Raoult D. The rhizome of Reclinomonas americana, Homo sapiens, Pediculus humanus and Saccharomyces cerevisiae mitochondria. Biology Direct. 2011;6:55. https://doi.org/10.1186/1745-6150-6-55.
  20. López-Torrejón G, Jiménez-Vicente E, María Buesa J, et al. Expression of a functional oxygen-labile nitrogenase component in the mitochondrial matrix of aerobically grown yeast. Nature Communication. 2016;7. https://doi.org/10.1038/ncomms11426.
  21. Rogers C, Oldroyd GED. Synthetic biology approaches to engineering the nitrogen symbiosis in cereals. Journal of Experimental Botany. 2014;65(8):1939-1946. https://doi.org/10.1093/jxb/eru098.
  22. Saikia SP, Jain V, Khetarpal S, Aravind S. Dinitrogen fixation activity of Azospirillum brasilense in maize (Zea mays). Current Science. 2007;93:1296-1300.
  23. Madsen LH, Tirichine L, Jurkiewicz A, et al. The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicas. Nature Communications. 2010;1(1):1-12. https://doi.org/10.1038/ncomms1009.
  24. Gibson DG, Glass JI, Lartigue C, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science. 2010;329(5987):52-56. https://doi.org/10.1126/science.1190719.

Copyright (c) 2019 Provorov N.A., Tikhonovich I.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies