Sensitive to the effects of environmental factors miR-638 and common diseases

Cover Page

Cite item

Abstract

The review provides information on environmental factors affecting the level of miR-638 in humans, potential target genes of this micro-RNA (according to “TargetScanHuman”), diseases and metabolic pathways which potentially regulated miR-638, as well as clinical and experimental data confirming the involvement of miR-638 in the developing a wide range of multifactorial diseases. The data presented in the review expand the understanding of the pathogenesis of various diseases of a multifactorial nature and determine new strategies for studying gene-environment interactions that are important for the formation of health.

About the authors

Aksana N. Kucher

Research Institute of Medical Genetics, Tomsk NRMC

Author for correspondence.
Email: aksana.kucher@medgenetics.ru
ORCID iD: 0000-0003-3824-3641
SPIN-code: 5251-2055
Scopus Author ID: 7004507293
ResearcherId: A-7789-2014
http://www.medgenetics.ru/science/lpg1/personallpg/201590/

Leading Researcher of the Laboratory of Population Genetics, Doctor of Biological Sciences, Professor

Russian Federation, Ushaika Embankment, 10, Tomsk, 634050

References

  1. Баранов В.С., Баранова Е.В. Геном человека, эпигенетика многофакторных болезней и персонифицированная медицина // Биосфера. – 2012. – Т. 4. – № 1. – С. 76–85. [Baranov VS, Baranova EV. Human genome, epigenetics of complex diseases, and personalized medicine. Biosfera. 2012;4(1):76–85. (In Russ.)]
  2. Паткин Е.Л., Софронов Г.А. Эпигенетика популяций, экотоксикогенетика и болезни человека // Экологическая генетика. – 2012. – Т. 10. – № 4. – С. 14–28. [Patkin EL, Sofronov GA. Population epigenetics, ecotoxicology and human diseases. Ecological Genetics. 2012;10(4):14-28. (In Russ.)]
  3. Ахмадишина Л.З., Корытина Г.Ф., Кочетова О.В., Викторова Т.В. Анализ ген- (CYP1A2, CYP2F1, NQO1, UGT2B7, CAT, GSTP1) средовых взаимодействий при профессиональном хроническом бронхите // Экологическая генетика. – 2014. – Т. 12. – № 2. – С. 47–59. [Akhmadishina LZ, Korytina GF, Kochetova OV, Viktorova TV. Gene- (CYP1A2, CYP2F1, NQO1, UGT2B7, CAT, GSTP1) environment interactions analysis in occupational chronic bronchitis. Ecological Genetics. 2014;12(2):47-59. (In Russ.)]. https://doi.org/10. 17816/ecogen12247-59.
  4. Davis FM, Gallagher KA. Epigenetic mechanisms in monocytes/macrophages regulate inflammation in cardiometabolic and vascular disease. Arterioscler Thromb Vasc Biol. 2019;39(4):623-634. https://doi.org/10. 1161/ATVBAHA.118. 312135.
  5. Rohde K, Keller M, La Cour Poulsen L, et al. Genetics and epigenetics in obesity. Metabolism. 2019;92:37-50. https://doi.org/10. 1016/j.metabol.2018. 10. 007.
  6. Guida F, Sandanger TM, Castagné R, et al. Dynamics of smoking-induced genome-wide methylation changes with time since smoking cessation. Hum Mol Genet. 2015;24(8):2349-2359. https://doi.org/10. 1093/hmg/ddu751.
  7. Joubert BR, Felix JF, Yousefi P, et al. DNA Methylation in newborns and maternal smoking in pregnancy: genome-wide consortium meta-analysis. Am J Hum Genet. 2016;98(4):680-696. https://doi.org/10. 1016/j.ajhg.2016. 02. 019.
  8. De Vries M, van der Plaat DA, Nedeljkovic I, et al. From blood to lung tissue: effect of cigarette smoke on DNA methylation and lung function. Respir Res. 2018;19(1):212. https://doi.org/10. 1186/s12931-018-0904-y.
  9. Siemelink MA, van der Laan SW, Haitjema S, et al. Smoking is associated to DNA methylation in atherosclerotic carotid lesions. Circ Genom Precis Med. 2018;11(9):e002030. https://doi.org/10. 1161/CIRCGEN.117. 002030.
  10. Кучер А.Н., Назаренко М.С., Марков А.В., и др. Вариабельность профилей метилирования CpG-сайтов генов микроРНК в лейкоцитах и тканях сосудов при атеросклерозе у человека // Биохимия. – 2017. – Т. 82. – № 6. – С. 923–933. [Kucher AN, Nazarenko MS, Markov AV, et al. Variability of methylation profiles of CpG sites in microRNA genes in leukocytes and vascular tissues of patients with atherosclerosis. Biochemistry (Moscow). 2017;82(6):698-706. (In Russ.)]. https://doi.org/10. 1134/S0006297917060062.
  11. Li D, Wang Q, Liu C, et al. Aberrant expression of miR-638 contributes to benzo(a)pyrene-induced human cell transformation. Toxicol Sci. 2012;125(2):382-391. https://doi.org/10. 1093/toxsci/kfr299.
  12. Saxena T, Tandon B, Sharma S, et al. Combined miRNA and mRNA signature identifies key molecular players and pathways involved in chikungunya virus infection in human cells. PLoS One. 2013;8(11):e79886. https://doi.org/10. 1371/journal.pone.0079886.
  13. Liu Y, Chen X, Bian Q, et al. Analysis of plasma microRNA expression profiles in a Chinese population occupationally exposed to benzene and in a population with chronic benzene poisoning. J Thorac Dis. 2016;8(3):403-14. https://doi.org/10. 21037/jtd.2016. 02. 56.
  14. Liu X, Wang T, Wakita T, Yang W. Systematic identification of microRNA and messenger RNA profiles in hepatitis C virus-infected human hepatoma cells. Virology. 2010;398(1):57-67. https://doi.org/10. 1016/j.virol.2009. 11. 036.
  15. Sturchio E, Colombo T, Boccia P, et al. Arsenic exposure triggers a shift in microRNA expression. Sci Total Environ. 2014;472(528):672-680. https://doi.org/10. 1016/j.scitotenv.2013. 11. 092.
  16. Xun M, Ma CF, Du QL, et al. Differential expression of miRNAs in enterovirus 71-infected cells. Virol J. 2015;12(1):56. https://doi.org/10. 1186/s12985-015-0288-2.
  17. Wang H, Yao H, Yi B, et al. MicroRNA-638 inhibits human airway smooth muscle cell proliferation and migration through targeting cyclin D1 and NOR1. J Cell Physiol. 2018;234(1):369-381. https://doi.org/10. 1002/jcp.26930.
  18. Li X, Shi Y, Wei Y, et al. Altered expression profiles of microRNAs upon arsenic exposure of human umbilical vein endothelial cells. Environ Toxicol Pharmacol. 2012;34(2):381-387. https://doi.org/10. 1016/j.etap.2012. 05. 003.
  19. Zhang X, Chen C, Wu M, et al. Plasma microRNA profile as a predictor of early virological response to interferon treatment in chronic hepatitis B patients. Antivir Ther. 2012;17(7):1243-1253. https://doi.org/10. 3851/IMP2401.
  20. Kumar M, Sharma Y, Bandi S, Gupta S. Endogenous antiviral microRNAs determine permissiveness for hepatitis B virus replication in cultured human fetal and adult hepatocytes. J Med Virol. 2015;87(7):1168-1183. https://doi.org/10. 1002/jmv.24145.
  21. Wan Y, Cui R, Gu J, et al. Identification of four oxidative stress-responsive microRNAs, miR-34a-5p, miR-1915-3p, miR-638, and miR-150-3p, in hepatocellular carcinoma. Oxid Med Cell Longev. 2017;2017:5189138. https://doi.org/10. 1155/2017/5189138.
  22. Naraballobh W, Trakooljul N, Murani E, et al. miRNAs regulate acute transcriptional changes in broiler embryos in response to modification of incubation temperature. Sci Rep. 2018;8(1):11371. https://doi.org/10. 1038/s41598-018-29316-7.
  23. Bastian FB, Parmentier G, Roux J, et al. Bgee: integrating and comparing heterogeneous transcriptome data among species. 2008;5109:124-131 [Internet]. In: Bairoch A, Cohen Boulakia S, Froidevaux C. DILS: data integration in life sciences. 5th International Workshop, DILS2008, Evry, France, June 25-27, 2008. Available from: https://bgee.org/?page=about.
  24. Genevisible. TOP 10 CANCERS [Internet]. Nebion AG, Zurich, Switzerland; 2016. Available from: https://genevisible.com/cancers/HS/UniProt/P50570.
  25. Shen Y, Chen H, Gao L, et al. MiR-638 acts as a tumor suppressor gene in gastric cancer. Oncotarget. 2017;8(64):108170-108180. https://doi.org/10. 18632/oncotarget.22567.
  26. Zhao LY, Tong DD, Xue M, et al. MeCP2, a target of miR-638, facilitates gastric cancer cell proliferation through activation of the MEK1/2-ERK1/2 signaling pathway by upregulating GIT1. Oncogenesis. 2017;6(7): e368. https://doi.org/10. 1038/oncsis.2017. 60.
  27. Zhang J, Fei B, Wang Q, et al. MicroRNA-638 inhibits cell proliferation, invasion and regulates cell cycle by targeting tetraspanin 1 in human colorectal carcinoma. Oncotarget. 2014;5(23):12083-12096.
  28. NCBI. Gene [Internet]. Available from: https://www.ncbi.nlm.nih.gov/gene/.
  29. EMBL-EBI. Ensembl Release 97 [cited July 2019]. Available from: https://www.ensembl.org.
  30. TargetScanHuman. Search for predicted microRNA targets in mammals [cited March 2018]. Available from: http://www.targetscan.org/vert_72/.
  31. Agarwal V, Bell GW, Nam J, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4: e05005. https://doi.org/10. 7554/eLife.05005.
  32. WebGestalt. WEB-based GEne SeT AnaLysis Toolkit [cited 05/22/2019]. Available from: http://www.webgestalt.org/option.php.
  33. Wang J, Duncan D, Shi Z, et al. WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res. 2013;41(Web Server issue): W77-83. https://doi.org/10. 1093/nar/gkt439.
  34. Tan X, Peng J, Fu Y, et al. miR-638 mediated regulation of BRCA1 affects DNA repair and sensitivity to UV and cisplatin in triple-negative breast cancer. Breast Cancer Res. 2014;16(5):435. https://doi.org/10. 1186/s13058-014-0435-5.
  35. Li M, Wang J, Liu H. Downregulation of miR-638 promotes progression of breast cancer and is associated with prognosis of breast cancer patients. Onco Targets Ther. 2018;11:6871-7. https://doi.org/10. 2147/OTT.S182034.
  36. Ren Y, Chen Y, Liang X, et al. MiRNA-638 promotes autophagy and malignant phenotypes of cancer cells via directly suppressing DACT3. Cancer Lett. 2017;390: 126-36. https://doi.org/10. 1016/j.canlet.2017. 01. 009.
  37. Wang F, Lou JF, Cao Y, et al. miR-638 is a new biomarker for outcome prediction of non-small cell lung cancer patients receiving chemotherapy. Exp Mol Med. 2015;47:e162. https://doi.org/10. 1038/emm.2015. 17.
  38. Liu N, Cui RX, Sun Y, et al. A four-miRNA signature identified from genome-wide serum miRNA profiling predicts survival in patients with nasopharyngeal carcinoma. Int J Cancer. 2014;134(6):1359-1368. https://doi.org/10. 1002/ijc.28468.
  39. Yan S, Dang G, Zhang X, et al. Downregulation of circulating exosomal miR-638 predicts poor prognosis in colon cancer patients. Oncotarget. 2017;8(42):72220-72226. https://doi.org/10. 18632/oncotarget.19689.
  40. Yan S, Han B, Gao S, et al. Exosome-encapsulated microRNAs as circulating biomarkers for colorectal cancer. Oncotarget. 2017;8(36):60149-60158. https://doi.org/10. 18632/oncotarget.18557.
  41. Cheng J, Chen Y, Zhao P, et al. Dysregulation of miR-638 in hepatocellular carcinoma and its clinical significance. Oncol Lett. 2017;13(5):3859-3865. https://doi.org/10. 3892/ol.2017. 5882.
  42. Shi M, Jiang Y, Yang L, et al. Decreased levels of serum exosomal miR-638 predict poor prognosis in hepatocellular carcinoma. J Cell Biochem. 2018;119(6):4711-6. https://doi.org/10. 1002/jcb.26650.
  43. Ye W, Li J, Fang G, et al. Expression of microRNA 638 and sex-determining region Y-box 2 in hepatocellular carcinoma: Association between clinicopathological features and prognosis. Oncol Lett. 2018;15(5):7255-7264. https://doi.org/10. 3892/ol.2018. 8208.
  44. Wei H, Zhang JJ, Tang QL. MiR-638 inhibits cervical cancer metastasis through Wnt/β-catenin signaling pathway and correlates with prognosis of cervical cancer patients. Eur Rev Med Pharmacol Sci. 2017;21(24):5587-5593. https://doi.org/10. 26355/eurrev_201712_13999.
  45. Wang XX, Liu J, Tang YM, et al. MicroRNA-638 inhibits cell proliferation by targeting suppress PIM1 expression in human osteosarcoma. Tumour Biol. 2017. https://doi.org/10. 1007/s13277-016-5379-1.
  46. Zhou X, Chen J, Xiao Q, et al. MicroRNA-638 inhibits cell growth and tubule formation by suppressing VEGFA expression in human Ewing sarcoma cells. Biosci Rep. 2018;38(1). pii:BSR20171017. https://doi.org/10. 1042/BSR20171017.
  47. Chen Z, Duan X. hsa_circ_0000177-miR-638-FZD7-Wnt signaling cascade contributes to the malignant behaviors in glioma. DNA Cell Biol. 2018;37(9):791-797. https://doi.org/10. 1089/dna.2018. 4294.
  48. Luque A, Farwati A, Krupinski J, Aran JM. Association between low levels of serum miR-638 and atherosclerotic plaque vulnerability in patients with high-grade carotid stenosis. J Neurosurg. 2018;1-8. https://doi.org/10. 3171/2018. 2. JNS171899.
  49. Woo MY, Yun SJ, Cho O, et al. MicroRNAs differentially expressed in Behçet disease are involved in interleukin-6 production. J Inflamm (Lond). 2016;13:22. https://doi.org/10. 1186/s12950-016-0130-7.
  50. Christenson SA, Brandsma CA, Campbell JD, et al. miR-638 regulates gene expression networks associated with emphysematous lung destruction. Genome Med. 2013;5(12):114. https://doi.org/10. 1186/gm519.
  51. Ding CF, Chen WQ, Zhu YT, et al. Circulating microRNAs in patients with polycystic ovary syndrome. Hum Fertil (Camb). 2015;18(1):22-29. https://doi.org/10. 3109/14647273. 2014. 956811.
  52. Vaira V, Roncoroni L, Barisani D, et al. microRNA profiles in coeliac patients distinguish different clinical phenotypes and are modulated by gliadin peptides in primary duodenal fibroblasts. Clin Sci (Lond). 2014;126(6): 417-423. https://doi.org/10. 1042/CS20130248.
  53. Vrabec K, Boštjančič E, Koritnik B, et al. Differential expression of several miRNAs and the host genes AATK and DNM2 in leukocytes of sporadic ALS patients. Front Mol Neurosci. 2018;11:106. https://doi.org/10. 3389/fnmol.2018. 00106.
  54. Steen SO, Iversen LV, Carlsen AL, et al. The circulating cell-free microRNA profile in systemic sclerosis is distinct from both healthy controls and systemic lupus erythematosus. J Rheumatol. 2015;42(2):214-221. https://doi.org/10. 3899/jrheum.140502.
  55. Lu J, Kwan BC, Lai FM, et al. Glomerular and tubulointerstitial miR-638, miR-198 and miR-146a expression in lupus nephritis. Nephrology (Carlton). 2012;17(4):346-351. https://doi.org/10. 1111/j.1440-1797. 2012. 01573. x.
  56. Dai Y, Sui W, Lan H, et al. Comprehensive analysis of microRNA expression patterns in renal biopsiesof lupus nephritis patients. Rheumatol Int. 2009;29(7):749-754. https://doi.org/10. 1007/s00296-008-0758-6.
  57. Te JL, Dozmorov IM, Guthridge JM, et al. Identification of unique microRNA signature associated with lupus nephritis. PLoS One. 2010;5(5): e10344. https://doi.org/10. 1371/journal.pone.0010344.
  58. Delić D, Eisele C, Schmid R, et al. Urinary exosomal miRNA signature in type II diabetic nephropathy patients. PLoS One. 2016;11(3):e0150154. https://doi.org/10. 1371/journal.pone.0150154.
  59. Wang G, Kwan BC, Lai FM, et al. Urinary sediment miRNA levels in adult nephrotic syndrome. Clin Chim Acta. 2013;418:5-11. https://doi.org/10. 1016/j.cca.2012. 12. 011.
  60. Marques FZ, Campain AE, Tomaszewski M, et al. Gene expression profiling reveals renin mRNA overexpression in human hypertensive kidneys and a role for microRNAs. Hypertension. 2011;58(6):1093-1098. https://doi.org/10. 1161/HYPERTENSIONAHA.111. 180729.
  61. Wu C, Lin H, Wang Q, et al. Discrepant expression of microRNAs in transparent and cataractous human lenses. Invest Ophthalmol Vis Sci. 2012;53(7): 3906-3912. https://doi.org/10. 1167/iovs.11-9178.
  62. Liu J, Li H, Sun L, et al. Aberrantly methylated-differentially expressed genes and pathways in colorectal cancer. Cancer Cell Int. 2017;17:75. https://doi.org/10. 1186/s12935-017-0444-4.
  63. He M, Lin Y, Tang Y, et al. miR-638 suppresses DNA damage repair by targeting SMC1A expression in terminally differentiated cells. Aging (Albany NY). 2016;8(7):1442-1456. https://doi.org/10. 18632/aging.100998.
  64. Li P, Liu Y, Yi B, et al. MicroRNA-638 is highly expressed in human vascular smooth muscle cells and inhibits PDGF-BB-induced cell proliferation and migration through targeting orphan nuclear receptor NOR1. Cardiovasc Res. 2013;99(1):185-193. https://doi.org/10. 1093/cvr/cvt082.
  65. Zufiría M, Gil-Bea FJ, Fernández-Torrón R, et al. ALS: a bucket of genes, environment, metabolism and unknown ingredients. Prog Neurobiol. 2016;142:104-129. https://doi.org/10. 1016/j.pneurobio.2016. 05. 004.
  66. Nicoloso MS, Sun H, Spizzo R, et al. Single-nucleotide polymorphisms inside microRNA target sites influence tumor susceptibility. Cancer Res. 2010;70(7):2789-2798. https://doi.org/10. 1158/0008-5472. CAN-09-3541.
  67. Park SL, Patel YM, Loo LW, et al. Association of internal smoking dose with blood DNA methylation in three racial/ethnic populations. Clin Epigenetics. 2018;10(1):110. https://doi.org/10. 1186/s13148-018-0543-7.
  68. Tsai PC, Glastonbury CA, Eliot MN, et al. Smoking induces coordinated DNA methylation and gene expression changes in adipose tissue with consequences for metabolic health. Clin Epigenetics. 2018;10(1):126. https://doi.org/10. 1186/s13148-018-0558-0.
  69. Hannon E, Knox O, Sugden K, et al. Characterizing genetic and environmental influences on variable DNA methylation using monozygotic and dizygotic twins. PLoS Genet. 2018;14(8):e1007544. https://doi.org/10. 1371/journal.pgen.1007544.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Kucher A.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies