Complex study of potential toxicity and genotoxicity of water samples from natural sources of the suburban zone of Almaty

Cover Page

Cite item

Abstract

Background. Natural aquatic ecosystems are the habitat of many organisms, a source of drinking water, a resource for human activities and are subjected to anthropogenic pressure. In this regard, interest in studying the genotoxicity and mutagenicity of surface waters has increased significantly. The aim of this study is to investigate the cytotoxic, genotoxic and mutagenic effects of the surface waters of the suburban area of Almaty.

Material and methods. The research materials were water samples of the rivers Esik, Turgen and Lake Esik. The atomic absorption method, lux-test, cytogenetic tests (Hordeum vulgare L.), phytotoxicity test (Allium cepa L.) and embryotoxicity (Danio rerio H.) were used.

Results. Physico-chemical water analysis revealed an excess of MPC for Mn, Pb, Cd, Zn. Using the lux-test on E. coli KatG strains, the pro-oxidant activity of Esik R. water. On the plant test objects revealed toxicity and mutagenicity of water samples. The results of bio-testing of natural waters with D. rerio revealed their high toxicity and teratogenicity for embryos at all stages of development.

Conclusion. The results of this study obtained on various test-systems and test-objects indicate that surface waters are contaminated by environmentally dangerous factors that pose a threat to biota and human health.

About the authors

Anna V. Lovinskaya

al-Farabi Kazakh National University

Author for correspondence.
Email: annalovinska@rambler.ru
ORCID iD: 0000-0001-7012-2415
SPIN-code: 5200-6734
Scopus Author ID: 55701592700
ResearcherId: N-6536-2014

PhD, Senior Lecturer, Senior Researcher, Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology

Kazakhstan, 71 al-Farabi ave., Almaty, 050038

Saule Zh. Kolumbayeva

al-Farabi Kazakh National University

Email: saule.kolumbayeva@kaznu.kz
ORCID iD: 0000-0003-0835-3655
SPIN-code: 6953-7523
Scopus Author ID: 22134772600
ResearcherId: N-8528-2014

Doctor of Biological Science, professor, Chief Researcher, Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology

Kazakhstan, 71 al-Farabi ave., Almaty, 050038

Maria A. Suvorova

al-Farabi Kazakh National University

Email: maria_suvorova@list.ru
SPIN-code: 3320-0084

PhD, Senior Researcher of the Mutagenesis Laboratory

Kazakhstan, 71 al-Farabi ave., Almaty, 050038

Akerke I. Iliyassova

al-Farabi Kazakh National University

Email: ailiyassova@mail.ru

Master Student, Research Intern, Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology

Kazakhstan, 71 al-Farabi ave., Almaty, 050038

Zarema M. Biyasheva

al-Farabi Kazakh National University

Email: zaremabiya@gmail.com
Scopus Author ID: 6506213425

Candidate of Biological Science, Associate Professor, Department of Molecular Biology and Genetics, Faculty of Biology and Biotechnology

Kazakhstan, 71 al-Farabi ave., Almaty, 050038

Serikbay K. Abilev

Vavilov Institute of General Genetics; Lomonosov Moscow State University

Email: abilev@vigg.ru
SPIN-code: 4692-4311
Scopus Author ID: 8723003000

Doctor of Biological Science, Professor, Scientific Secretary; Professor, Department of Genetics, Faculty of Biology

Russian Federation, 3, Gubkin street, Moscow, 119991; 1, Leninskie gory, Moscow, 119991

References

  1. de Castro ESJM, Peron AP, da Silva ESL, et al. Cytotoxicity and genotoxicity of Guaribas river water (Piaui, Brazil), influenced by anthropogenic action. Environ Monit Assess. 2017;189(6):301. https://doi.org/10.1007/s10661-017-6015-2.
  2. Geras’kin S, Oudalova A, Michalik B, et al. Geno-toxicity assay of sediment and water samples from the Upper Silesia post-mining areas, Poland by means of Allium-test. Chemosphere. 2011;83(8):1133-1146. https://doi.org/10.1016/j.chemosphere.2011.01.008.
  3. Ye Y, Weiwei J, Na L, et al. Assessing of genotoxicity of 16 centralized source-waters in China by means of the SOS/umu assay and the micronucleus test: initial identification of the potential genotoxicants by use of a GC/MS method and the QSAR Toolbox 3.0. Mutat Res Genet Toxicol Environ Mutagen. 2014;763:36-43. https://doi.org/10.1016/j.mrgentox.2013.11.003.
  4. Simonyan A, Gabrielyan B, Minasyan S, et al. Genotoxicity of water contaminants from the basin of lake Sevan, Armenia evaluated by the Comet Assay in Gibel carp (Carassius auratus gibelio) and Tradescantia Bioassays. Bull Environ Contam Toxicol. 2016;96(3):309-313. https://doi.org/10.1007/s00128-015-1720-4.
  5. Nie X, Liu W, Zhang L, Liu Q. Genotoxicity of drinking water treated with different disinfectants and effects of disinfection conditions detected by umu-test. J Environ Sci (China). 2017;56:36-44. https://doi.org/10.1016/j.jes.2016.07.016.
  6. Liviac D, Wagner ED, Mitch WA, et al. Genotoxicity of water concentrates from recreational pools after various disinfection methods. Environ Sci Technol. 2010;44(9):3527-3532. https://doi.org/10.1021/es903593w.
  7. Ларикова Н.В., Бабошкина С.В., Лиходумова И.Н., и др. Генотоксикологическая оценка питьевой воды и некоторые показатели заболеваемости населения Северо-Казахстанской области // Экологическая генетика. – 2012. – Т. 10. – № 4. – С. 40–49. [Larikova NV, Baboshkina SV, Likhodumova IN, et al. Genotoxicity evaluation of drinking water and rates of population morbidity in North Kazakhstan oblast. Ekol Genet. 2012;10(4):40-49. (In Russ.)]
  8. ГОСТ 31861-2012. Международный стандарт. Вода. Общие требования к отбору проб. – М.: Стандартинформ, 2013. – 64 c. [GOST 31861-2012. Mezhdunarodnyy standart. Voda. Obshchie trebovaniya k otboru prob. Moscow: Standartinform; 2013. 64 p. (In Russ.)]
  9. Федеральная служба по надзору в сфере природопользования. ПНД Ф 14.1:2:4.214-06. Количественный химический анализ вод. Методика измерений массовых концентраций железа, кадмия, кобальта, марганца, никеля, меди, цинка, хрома и свинца в питьевых, поверхностных и сточных водах методом пламенной атомно-абсорбционной спектрометрии. – М.: Стандартинформ, 2006. – 22 с. [Federal’naya sluzhba po nadzoru v sfere prirodopol’zovaniya. PND F 14.1:2:4.214-06. Kolichestvennyy khimicheskiy analiz vod. Metodikaizmereniy massovykh kontsentratsiy zheleza, kadmiya, kobal’ta, margantsa, nikelya, medi, tsinka, khroma i svintsa v pit’evykh, poverkhnostnykh i stochnykh vodakh metodom plamennoy atomno-absorbtsionnoy spektrometrii. Moscow: Standartinform; 2006. 22 р. (In Russ.)]
  10. Котова В.Ю., Манухов И.В., Завильгельский Г.Б. Lux-биосенсоры для детекции SOS-ответа, теплового шока и окислительного стресса // Биотехнология. – 2009. – Т. 6. – С. 16–25. [Kotova VY, Manukhov IV, Zavil’gel’skiy GB. Lux-biosensors for detection of SOS-response, heat shock, and oxidative stress. Applied Biochemistry and Microbiology. 2010;46(8):781-788. (In Russ.)]
  11. Zavilgelsky GB, Kotova VY, Manukhov IV. Action of 1,1-dimethylhydrazine on bacterial cells is determined by hydrogen peroxide. Mutat Res. 2007; 634(1-2):172-176. https://doi.org/10.1016/j.mrgentox.2007.07.012.
  12. Кхатаб З.С. Эколого-генетическая оценка качества воды родников г. Ростова-на-Дону методом биотестирования с использованием светящихся бактерий: Автореф. дис. … канд. биол. наук. – Ростов н/Д, 2012. [Kkhatab ZS. Ekologo-geneticheskaya otsenka kachestva vody rodnikov g. Rostova-na-Donu metodom biotestirovaniya s ispol’zovaniem svetyashchikhsya bakteriy. [dissertation] Rostov-na-Donu; 2012. (In Russ.)]
  13. da Silva R.M.G., do Amaral EA, de Oliveira Moraes VM, Silva LP. Determination of heavy metals and genotoxicity of water from an artesian well in the city of Vazante-MG, Brazil. Afr J Biotechnol. 2013;12(50):6938-6943.
  14. Подовалова С.В., Иванютин Н.М. Оценка качества вод реки Салгир с использованием метода биотестирования // Научный журнал Российского НИИ проблем мелиорации. – 2017. – Т. 27. – № 3. – С. 127–143. [Podovalova SV, Ivanyutin NM. Estimation of water quality of the salgir river by biotesting method. Nauchnyy zhurnal Rossiyskogo NII problem melioratsii. 2017;27(3):127-143. (In Russ.)]
  15. Паушева З.П. Практикум по цитологии растений. – М.: Агропромиздат, 1988. – 271 c. [Pausheva ZP. Praktikum po tsitologii rasteniy. Moscow: Agropromizdat; 1988. 271 p. (In Russ.)]
  16. Kimmel CB, Ballard WW, Kimmel SR, et al. Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203(3):253-310. https://doi.org/10.1002/aja.1002030302.
  17. OECD Guidelines for the Testing of Chemicals. Test No. 236: Fish Embryo Acute Toxicity (FET) Test. Paris: The OECD observer; 2013. 22 p.
  18. Busquet F, Nagel R, von Landenberg F, et al. Development of a new screening assay to identify proteratogenic substances using zebrafish danio rerio embryo combined with an exogenous mammalian metabolic activation system (mDarT). Toxicol Sci. 2008;104(1):177-188. https://doi.org/10.1093/toxsci/kfn065.
  19. de Souza Anselmo C, Sardela VF, de Sousa VP, Pereira HMG. Zebrafish (Danio rerio): A valuable tool for predicting the metabolism of xenobiotics in humans? Comp Biochem Physiol C Toxicol Pharmacol. 2018;212:34-46. https://doi.org/10.1016/j.cbpc.2018.06.005.
  20. Kern DI, Schwaickhardt Rde O, Lutterbeck CA, et al. Ecotoxicological and genotoxic assessment of hospital laundry wastewaters. Arch Environ Contam Toxicol. 2015;68(1):64-73. https://doi.org/10.1007/s00244-014-0072-0.
  21. Patil PN, Sawant DV, Deshmukh RN. Physico-Chemical Parameters for Testing of Water — a Review. Int J Environ Sci. 2012;3(3):1194-1207.
  22. Прожорина Т.И., Каверина Н.В., Никольская А.Н., и др. Эколого-аналитические методы исследования окружающей среды. – Воронеж: Истоки, 2010. – 304 c. [Prozhorina TI, Kaverina NV, Nikol’skaya AN, et al. Ekologo-analiticheskie metody issledovaniya okruzhayushchey sredy. Voronezh: Istoki; 2010. 304 p. (In Russ.)]
  23. Dimitrova I, Ivanova E. Effect of heavy metal soil pollution on some morphological and cytogenetical characteristics of flax (Linum usitatissum L.). J Balkan Ecol. 2003;(6):212-218.
  24. Yildiz M, Cigerci IH, Konuk M, et al. Determination of genotoxic effects of copper sulphate and cobalt chloride in Allium cepa root cells by chromosome aberration and comet assays. Chemosphere. 2009;75(7):934-938. https://doi.org/10.1016/j.chemosphere.2009.01.023.
  25. Grover P, Rekhadevi PV, Danadevi K, et al. Genotoxicity evaluation in workers occupationally exposed to lead. Int J Hyg Environ Health. 2010;213(2):99-106. https://doi.org/10.1016/j.ijheh.2010.01.005.
  26. Braunbeck T, Lammer E. Fish embryo toxicity assays. Heidelberg: University of Heidelberg; 2006. 298 p.
  27. Игонина Е.В., Марсова М.В., Абилев С.К. Lux-биосенсоры: скрининг биологически активных соединений на генотоксичность // Экологическая генетика. – 2016. – Т. 14. – № 4. – C. 52–62. [Igonina EV, Marsova MV, Abilev SK. Lux-biosensors: screening biologically active compounds for genotoxicity. Ecological genetics. 2016;14(4):52-62. (In Russ.)]. https://doi.org/10.17816/ecogen14452-62.
  28. Ловинская А.В., Колумбаева С.Ж., Шалахметова Т.М., и др. Антигенотоксическая активность биологически активных веществ в экстрактах Inula britannica и Limonium gmelinii // Генетика. – 2017. – Т. 53. – № 12. – С. 1393–1401. [Lovinskaya AV, Kolumbaeva SZh, Shalakhmetova TM, et al. Antigenotoxic activity of biologically active substances from Inula britannica and Limonium gmelini. Genetika. 2017;53(12):1311-1319. (In Russ.)].https://doi.org/10.7868/S0016675817120086.
  29. Sazykin IS, Sazykina MA, Khmelevtsova LE, et al. Biosensor-based comparison of the ecotoxicological contamination of the wastewaters of Southern Russia and Southern Germany. Int J Environ Sci Technol (Tehran). 2016;13(3):945-954. https://doi.org/10.1007/s13762-016-0936-0.
  30. Абилев С.К., Глазер В.М. Мутагенез с основами генотоксикологии. – М.; СПб.: Нестор-История, 2015. – 304 с. [Abilev SK, Glazer VM. Mutagenez s osnovami genotoksikologii. Moscow; Saint Petersburg: Nestor-Istoriya; 2015. 304 p. (In Russ.)]
  31. Pеутова Н.В. Мутагенный потенциал ряда тяжелых металлов // Экологическая генетика. – 2015. – Т. 13. – № 3. – С. 70–75. [Reutova NV. Mutagenic potential of some heavy metals. Ecological genetics. 2015;13(3)70-75. (In Russ.)]. https://doi.org/10.17816/ecogen13370-75. 2015;13(3): 70-75. (In Russ.)]

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The location of water sampling points in the suburban area of Almaty: No. 1 — river Esik (p. No. 1-1, 1-2, 1-3); No. 2 — Lake Esik (p. No. 2-1, 2-2, 2-3, 2-4); No. 3 — river Turgen (p. No. 3-1, 3-2)

Download (197KB)
3. Fig. 2. The average length of the roots of Allium cepa exposed to water samples from water bodies near the city of Almaty for 7 and 14 days

Download (71KB)
4. Fig. 3. Chromosome abnormalities induced by the waters of natural sources in barley seeds: a is the norm in metaphase (2n = 14); b — centric ring; c — acentric ring; d — chromatid terminal deletion; e — the norm in anaphase; f — bridge; g — lagging chromosomes; h — multipolar mitosis; i — polyploid set (2n = 28)

Download (65KB)
5. Fig. 4. Development of the D. rerio embryo in normality and pathology: а — is a normal D. rerio embryo in the chorion, ×40; E — eyes, YS — yolk sac, Ch — chorion; b — embryo with abnormal development of the caudal region and growth retardation, ×100; the arrows indicate the curvature of the axial skeleton

Download (38KB)

Copyright (c) 2019 Lovinskaya A.V., Kolumbayeva S.Z., Suvorova M.A., Iliyassova A.I., Biyasheva Z.M., Abilev S.K.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies