Phylogeny problems of the genus Vaccinium L. and ways to solve them

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The genus Vaccinium includes almost 500 species, among which there are economically important species of cranberries V. macrocarpon Ait. and V. oxycoccos L., lingonberries V. vitis-idaea L., bilberries V. myrtillus L. and blueberries V. uliginosum L., V. angustifolium Ait., V. corymbosum L., V. virgatum Ait. Despite the fact that many of these species were actively used by humans in medicine and food, their active selection began in the 20th century, in connection with which a classification of the genus according to morphological characters was developed. Many of these data remain relevant to the present day. The development of the ideas of molecular phylogeny prompted a revision of the old classification, identifying a number of difficulties that do not allow one to unambiguously determine phylogenetic relationships within the genus. Today, the genus includes 33 sections, while the species composition of the sections and the evolutionary relationships between them remain controversial. This review discusses various approaches to the study of the structure of the genus Vaccinium: from classical to phylogenomic, the main results of using these approaches and their prospects.

About the authors

Roman R. Zhidkin

Saint Petersburg State University

Author for correspondence.
Email: zhidkinr@gmail.com

Student

Russian Federation, Saint Petersburg

Tatyana V. Matveeva

Saint Petersburg State University

Email: radishlet@gmail.com
ORCID iD: 0000-0001-8569-6665
SPIN-code: 3877-6598
Scopus Author ID: 7006494611

Dr. Sci. (Biol.), Professor

Russian Federation, Saint Petersburg

References

  1. Sultana N, Menzel G, Heitkam T, et al. Bioinformatic and Molecular Analysis of Satellite Repeat Diversity in Vaccinium Genomes. Genes (Basel). 2020;11(5):527. doi: 10.3390/genes11050527
  2. Kron K, Powell E, Luteyn J. Phylogenetic relationships within the blueberry tribe (Vaccinieae, Ericaceae) based on sequence data from MATK and nuclear ribosomal ITS regions, with comments on the placement of Satyria. Am J Bot. 2002;89(2):327–336. doi: 10.3732/ajb.89.2.327
  3. npgsweb.ars-grin.gov. Genus: Vaccinium L. The Germplasm Resources Information Network [accessed: 15.05.2022]. Available from: https://npgsweb.ars-grin.gov/gringlobal/taxonomygenus?id=18663
  4. Vander Kloet SP, Dickinson TA. A subgeneric classification of the genus Vaccinium and the metamorphosis of V. section Bracteata Nakai: more terrestrial and less epiphytic in habit, more continental and less insular in distribution. J Plant Res. 2009;122(3):253–268. doi: 10.1007/s10265-008-0211-7
  5. Luby JJ, Ballington JR, Draper AD, et al. Blueberries and cranberries (Vaccinium). Acta Hortic. 1991;290:393–458. doi: 10.17660/actahortic.1991.290.9
  6. Vander Kloet SP. The Genus Vaccinium in North America. Ottawa: Agriculture Canada, Research Branch, 1988. 218 p.
  7. Wang H, Guo X, Hu X, et al. Comparison of phytochemical profiles, antioxidant and cellular antioxidant activities of different varieties of blueberry (Vaccinium spp.). Food Chem. 2017;217:773–781. doi: 10.1016/j.foodchem.2016.09.002
  8. Celli G, Kovalesk A. Blueberry and Cranberry. Integrated Processing Technologies for Food and Agricultural By-Products. 2019: 165–179. doi: 10.1016/b978-0-12-814138-0.00007-1
  9. Hancock JF, Lyrene P, Finn CE, et al. Blueberries and Cranberries. In: J.F. Hancock, editor. Temperate Fruit Crop Breeding. Springer Science+Business Media B.V., 2008. P. 115–150. doi: 10.1007/978-1-4020-6907-9_4
  10. Vorsa N, Zalapa J. Domestication, Genetics, and Genomics of the American Cranberry. Plant Breed Rev. 2019;43:279–315. doi: 10.1002/9781119616801.ch8
  11. www.fao.org. Crops and livestock products. FAOSTAT [accessed: 15.05.2022]. Available from: https://www.fao.org/faostat/en/ #data/QCL
  12. Song GQ, Hancock JF. Vaccinium. In: C. Kole, editor. Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg, 2010. P. 197–221. doi: 10.1007/978-3-642-16057-8_10
  13. Silva S, Costa EM, Veiga M, et al. Health promoting properties of blueberries: a review. Crit Rev Food Sci Nutr. 2018;60(2):181–200. doi: 10.1080/10408398.2018.1518895
  14. Abeywickrama G, Debnath SC, Ambigaipalan P, Shahidi F. Phenolics of Selected Cranberry Genotypes (Vaccinium macrocarpon Ait.) and Their Antioxidant Efficacy. J Agric Food Chem. 2016;64(49): 9342–9351. doi: 10.1021/acs.jafc.6b04291
  15. Diaz-Garcia L, Garcia-Ortega LF, González-Rodríguez M, et al. Chromosome-Level Genome Assembly of the American Cranberry (Vaccinium macrocarpon Ait.) and Its Wild Relative Vaccinium microcarpum. Front Plant Sci. 2021;12:633310. doi: 10.3389/fpls.2021.633310
  16. naturalhistory2.si.edu. Index Nominum Genericorum. Smithsonian. National Museum of Natural history [accessed: 15.05.2022]. Available from: https://naturalhistory2.si.edu/botany/ing/
  17. Camp WH. On the Structure of Populations in the Genus Vaccinium. Brittonia. 1942;4(2):189–204. doi: 10.2307/2804713
  18. Camp WH. The North American blueberries with notes on other groups of Vacciniaceae. Brittonia. 1945;5(3):203–275. doi: 10.2307/2804880
  19. Kloet SP. The taxonomy of the highbush blueberry, Vaccinium corymbosum. Canad J Bot. 1980;58(10):1187–1201. doi: 10.1139/b80-148
  20. Matveeva TV, Pavlova OA, Bogomaz DI, et al. Molecular markers for plant species identification and phylogenetics. Ecological genetics. 2011;9(1):32–43. (In Russ.) doi: 10.17816/ecogen9132-43
  21. Rodionov AV, Amosova AV, Belyakov EA, et al. Genetic Consequences of Interspecific Hybridization, Its Role in Speciation and Phenotypic Diversity of Plants. Russian Journal of Genetics. 2019;55(3):278–294. doi: 10.1134/s1022795419030141
  22. Young AD, Gillung JP. Phylogenomics — principles, opportunities and pitfalls of big-data phylogenetics. Syst Entomol. 2019;45(2): 225–247. doi: 10.1111/syen.12406
  23. Delsuc F, Brinkmann H, Philippe H. Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet. 2005;6(5):361–375. doi: 10.1038/nrg1603
  24. Patané JSL, Martins J, Setubal JC. Phylogenomics. In: J. Setubal, J. Stoye, P. Stadler, editors. Comparative Genomics. Methods in Molecular Biology. Vol. 1704. New York: Humana Press, 2017. P. 103–187. doi: 10.1007/978-1-4939-7463-4_5
  25. Fan H, Ives AR, Surget-Groba Y, Cannon CH. An assembly and alignment-free method of phylogeny reconstruction from next-generation sequencing data. BMC Genomics. 2015;16(1):522. doi: 10.1186/s12864-015-1647-5
  26. Crawford D, Giannasi D. Plant Chemosystematics. Bioscience. 1982;32(2):114–124. doi: 10.2307/1308564
  27. Zidorn C. Plant chemophenetics — A new term for plant chemosystematics/plant chemotaxonomy in the macro-molecular era. Phytochemistry. 2019;163:147–148. doi: 10.1016/j.phytochem.2019.02.013
  28. Reynolds T. The evolution of chemosystematics. Phytochemistry. 2007;68(22–24):2887–2895. doi: 10.1016/j.phytochem.2007.06.027
  29. Powell EA, Kron KA. Molecular Systematics of the Northern Andean Blueberries (Vaccinieae, Vaccinioideae, Ericaceae). Int J Plant Sci. 2003;164(6):987–995. doi: 10.1086/378653
  30. Soltis DE, Mavrodiev EV, Doyle JJ, et al. ITS and ETS Sequence Data and Phylogeny Reconstruction in Allopolyploids and Hybrids. Syst Bot. 2008;33(1):7–20. doi: 10.1600/036364408783887401
  31. Liu Y-C, Liu S, Liu D-C, et al. Exploiting EST databases for the development and characterization of EST-SSR markers in blueberry (Vaccinium) and their cross-species transferability in Vaccinium spp. Sci Hortic. 2014;176:319–329. doi: 10.1016/j.scienta.2014.07.026
  32. Schlautman B, Covarrubias-Pazaran GC, Fajardo D, et al. Discriminating power of microsatellites in cranberry organelles for taxonomic studies in Vaccinium and Ericaceae. Genet Resour Crop Evol. 2016;64(3):451–466. doi: 10.1007/s10722-016-0371-6
  33. Thomas RH. Molecular Evolution and Phylogenetics. Heredity (Edinb). 2001;86(3):385. doi: 10.1046/j.1365-2540.2001.0923a.x
  34. Kumar S, Stecher G, Li M, et al. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol. 2018;35(6):1547–1549. doi: 10.1093/molbev/msy096
  35. Rodriguez-Bonilla L, Williams KA, Rodríguez Bonilla F, et al. The Genetic Diversity of Cranberry Crop Wild Relatives, Vaccinium macrocarpon Aiton and V. oxycoccos L., in the US, with Special Emphasis on National Forests. Plants. 2020;9(11):1446. doi: 10.3390/plants9111446
  36. Sarracino JM, Vorsa N. Self and cross fertility in cranberry. Euphytica. 1991;58(2):129–136. doi: 10.1007/bf00022813
  37. Kawash J, Colt K, Hartwick NT, et al. Contrasting a reference cranberry genome to a crop wild relative provides insights into adaptation, domestication, and breeding. PLoS One. 2022;17(3): e0264966. doi: 10.1371/journal.pone.0264966
  38. Nishiyama S, Fujikawa M, Yamane H, et al. Genomic insight into the developmental history of southern highbush blueberry populations. Heredity (Edinb). 2020;126(1):194–205. doi: 10.1038/s41437-020-00362-0
  39. Leisner CP, Kamileen MO, Conway ME, et al. Differential iridoid production as revealed by a diversity panel of 84 cultivated and wild blueberry species. PLoS One. 2017;12(6):e0179417. doi: 10.1371/journal.pone.0179417
  40. Matveeva T. New naturally transgenic plants: 2020 update. Biological Communications. 2021;66(1). doi: 10.21638/spbu03.2021.105

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The phylogenetic tree obtained from the analysis of the matK and ITS sequences of various species of the Ericaceae family based on the data of K. Kron et al. [2], supplemented by us

Download (475KB)
3. Fig. 2. Phylogenetic tree of economically important species of the genus Vaccinium, built on the basis of the SSR loci of mitochondria and chloroplasts [32]. I — Species belonging in the Oxycoccus section, II — Vitis-idaea, III — Batodendron, IV — Cyanococcus

Download (103KB)
4. Fig. 3. Whole genome duplications in cranberry evolution based on pooled data [15, 37]. I — represents a γ-triplication, II — represents a Vm-α duplication, both of which formed the modern Vaccinium genome; III — Dl-α duplication of the genome characteristic of the genus Diospyros; IV — Ad-α duplication of the Actinidia genome

Download (148KB)

Copyright (c) 2022 ООО "Эко-Вектор"


 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies