Polymorphism of genes controlling low level of linolenic acid in lines from VIR flax genetic collection

Cover Page

Cite item

Abstract

Background. Linseed solin varieties were created for nutrition, but the effect of oil fatty acid (FA) composition on other characters is not clear.

Materials and methods. Using 6 inbreeding generations from 26 heterogeneous flax accessions were generated 19 high (HL), 7 medium (ML) and 14 low linolenic (LL) lines. For each lines contents of 5 basic FA: palmitic, stearic, oleic (OLE), linoleic (LIO) and linolenic (LIN); the ratio LIO/LIN, oil iodine number, vegetative period (VP) phases and plants size were evaluated. Development of CAPS marker for LuFAD3A gene was performed using idtdna.com. Sequencing of LIN genes sites was done in the Centre MCT SPBGU and Eurogen.

Results. ANOVA showed significant differences HL, ML and LL groups for PAL, OLE, LIO, LIN, LIO/LIN, IOD. Considerable decrease of LIN, causes asymmetric changes in FA ratio and correlations between them and other traits. Factor analysis revealed the influence of two factors. The first one divided lines according to their LIN level and characters associated with it, the second one – according to the VP and OLE. LIN synthesis is controlled by two complementary genes LuFAD3A and LuFAD3B. Sequencing of LuFAD3A gene 1 exon of 6 lines revealed a mutation (G255 → A255), resulting in formation of stop codon. Developed developed CAPS-marker confirmed the homozygosity of hybrids between LL (gc-391) and HL lines (gc-65, 109, 121). Descendants of hybrid between gc-109 and gc-391 ripened 8-10 days earlier than gc-391. CAPS markers of LuFAD3B gene revealed differences between HL, ML, LL lines. Sequencing of this gene first exon and the beginning of the second one in 3 lines (1HL, 2LL) showed that this method reveals a mutation in the second restriction site, located in the 2 exon (C6 → T6), and causing the replacement Hys → Tyr.

Conclusion. Lines from GC have wide variability of FA and other agronomic characters, combination of which will expand the cultivation of solin.

About the authors

Elizaveta A. Porokhovinova

Federal Research Centre N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)

Author for correspondence.
Email: e.porohovinova@mail.ru
ORCID iD: 0000-0002-8328-9684
SPIN-code: 5033-3263
Scopus Author ID: 22986519000
ResearcherId: S-6756-2016

PhD, Senior Researcher, Oil and Fibre Crops Department

Russian Federation, 42,44, B. Morskaya Street, St. Petersburg, 190000

Tatyana V. Shelenga

Federal Research Centre N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)

Email: tatianashelenga@yandex.ru
Scopus Author ID: 37069721500

PhD, Leader Researcher, Department of Biochemistry and Molecular Biology

Russian Federation, 42,44, B. Morskaya Street, St. Petersburg, 190000

Tatyana V. Matveeva

Saint Petersburg State University

Email: radishlet@gmail.com
ORCID iD: 0000-0001-8569-6665
SPIN-code: 3877-6598
Scopus Author ID: 7006494611
ResearcherId: J-6000-2013

Doctor of science, Professor, Chair of Genetics and Biotechnology

Russian Federation, 199034 , St. Petersburg, Universitetskaya Emb, 7/9  

Andrey V. Pavlov

Federal Research Centre N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)

Email: avpavlov77@yandex.ru
Scopus Author ID: 22986534600

PhD, Senior Researcher, Oil and Fibre Crops Department

Russian Federation, 42,44, B. Morskaya Street, St. Petersburg, 190000

Elizaveta A. Grigorieva

Federal Research Centre N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)

Email: e.grigoreva@vir.nw.ru

Master Student, Laboratory of Monitoring Genetic Erosion

Russian Federation, 42,44, B. Morskaya Street, St. Petersburg, 190000

Nina B. Brutch

Federal Research Centre N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)

Email: n.brutch@vir.nw.ru
SPIN-code: 1753-4382
Scopus Author ID: 26665888600

Doctor of Science, Main Researcher, Oil and Fibre Crops Department

Russian Federation, 42,44, B. Morskaya Street, St. Petersburg, 190000

References

  1. Viju C, Yeung MT, Kerr WA. Post-moratorium EU regulation of genetically modified products: triffid flax. CATPRN Commissioned Paper. 2011;(3):1-30.
  2. ФАОСТАТ. Сельскохозяйственные культуры: “crops processed”, element: “Area harvested”, “Yield” crops: linseed, flax [cited 2017 Dec 15]. Available from: http://www.fao.org/faostat/ru/#data/QC. Ссылка активна на 15.12.2017.
  3. Лукомец В.М., Зеленцов С.В., Кривошлыков К.М. Перспективы и резервы расширения производства масличных культур в Российской Федерации // Масличные культуры. Научно-технический бюллетень ВНИИМК. – 2015. – № 4. – С. 81–102. [Lukomets VM, Zelentsov SV, Krivoshlykov KM. Outlook and reserves the expansion of oil crops production in the Russian Federation. Oil crops. Scientific and Technical Bulletin VNIIMK. 2015;(4):81-102. (In Russ.)]
  4. Кутузова С.Н. Лен // Генетика культурных растений. – СПб.: ВИР, 1998. – C. 6–52. [Kutuzova SN. Len. In: Genetika kul'turnykh rastenii. St. Petersburg: VIR; 1998. P. 6-52. (In Russ.)]
  5. Сорта растений, включенные в Государственный реестр селекционных достижений, допущенных к использованию Сорта культуры «Лен-долгунец». [Sorta rasteniy, vklyuchennye v Gosudarstvennyy reestr selektsionnykh dostizheniy, dopushchennykh k ispol'zovaniyu Sorta kul'tury “Len-dolgunets” (In Russ.)]. Доступно по: http://reestr.gossort.com/reestr/ culture/133. Ссылка активна на 28.01.2018.
  6. Рожмина Т.А., Лошакова Н.И. Образцы прядильного и масличного льна (Linum usitatissimum L.) — источники эффективных генов устойчивости к фузариозному увяданию и ее зависимость от температуры // Сельскохозяйственная биология. – 2016. – Т. 51. – № 3. – С. 310–317. [Rozhmina TA, Loshakova NI. New sources of effective resistance genes to fusarium wilt in flax (Linum usitatissimum L.) depending on temperature. Agricultural biology. 2016;51(3):310-317. (In Russ.)]
  7. Каталог мировой коллекции ВИР. Лен (характеристика образцов по биохимическим показателям). – Вып. 775. – СПб.: ВИР; 2006. – 80 с. [Katalog mirovoi kollektsii VIR. Len (kharakteristika obraztsov po biokhimicheskim pokazatelyam). Issue 775. Saint Petersburg: VIR; 2006. 80 p. (In Russ.)]
  8. Тутельян В.А., Батурин А.К., Гаппаров М.Г., и др. Рациональное питание, нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации: Методические рекомендации. – М., 2008. – 39 с. [Tutel'yan VA, Baturin AK, Gapparov MG, et al. Ratsional'noye pitaniye, normy fiziologicheskikh potrebnostei v energii i pishchevykh veshchestvakh dlya razlichnykh grupp naseleniya Rossiiskoi Federatsii. Metodicheskiye rekomendatsii. Moscow; 2008. 39 p. (In Russ.)]
  9. Green AG. Genetic control of polyunsaturated fatty acid biosynthesis in flax (Linum usitatissimum) seed oil. Theor Appl Genet. 1986;72(5):654-661. https://doi.org/10.1007/BF00289004.
  10. Porokhovinova E, Shelenga T, Kosykh L, et al. Biochemical diversity of fatty acid composition in flax from VIR’s genetic collection and effect of environment on its development. Russ J Genet Appl Res. 2017;7(6):626-639. https://doi.org/10.1134/S2079059717060107.
  11. Thambugala D, Duguid S, Loewen E, et al. Genetic variation of six desaturase genes in flax and their impact on fatty acid composition. Theor Appl Genet. 2013;126(10):2627-2641. https://doi.org/10.1007/s00122-013-2161-2.
  12. Krasowska A, Dziadkowiec D, Polinceusz A, et al. Cloning of flax oleic fatty acid desaturase and its expression in yeast. J Am Oil Chem Soc. 2007;84(9):809-816. https://doi.org/10.1007/s11746-007-1106-9.
  13. Vrinten P, Hu Z, Munchinsky MA, et al. Two FAD3 desaturase genes control the level of linolenic acid in flax seed. Plant Physiol. 2005;139(1):79-87. https://doi.org/10.1104/pp.105.064451.
  14. Fofana B, Duguid S, Cloutier S. Cloning of fatty acid biosynthetic genes – ketoacyl CoA synthase, fatty acid elongase, stearoyl-ACP desaturase, and fatty acid desaturase and analysis of expression in the early developmental stages of flax (Linum usitatissimum L.) seeds. Plant Sci. 2004;166(6):1487-1496. https://doi.org/10.1016/j.plantsci.2004.01.025.
  15. You FM, Li P, Kumar S, et al. Genome-wide identification and characterization of the gene families controlling fatty acid biosynthesis in flax (Linum usitatissimum L.). J Proteomics Bioinform. 2014;7(10):310-326. https://doi.org/10.4172/jpb.1000334.
  16. Пороховинова Е.А. Генетический контроль морфологических признаков проростков, плода и семян у льна (Linum usitatissimum) // Вавиловский журнал генетики и селекции. – 2012. – Т. 16. – № 4–2. – С. 936–947. [Porokhovinova EA. Genetic control of morphological characters of seedlings, bolls, and seed in flax (Linum usitatissimum). Vavilov journal of genetics and breeding. 2012;16(4-2):936-947. (In Russ.)]
  17. Пороховинова Е.А. Изучение наследования окраски и формы цветка и семян, а также ее связи с продолжительностью фазы всходы — цветение у льна (Linum usitatissimum L.) // Научно-технический бюллетень ВНИИР им. Н.И. Вавилова. – 2000. – № 239. – С. 56–58. [Porokhovinova EA. Izuchenie nasledovaniya okraski i formy tsvetka i semyan, a takzhe ee svyazi s prodolzhitel'nost'yu fazy vskhody-tsvetenie u l'na (Linum usitatissimum L.). Nauchno-tekhnicheskiy byulleten' VNIIR im. N.I. Vavilova. 2000;(239):56-58. (In Russ.)]
  18. Брач Н.Б., Пороховинова Е.А. Метод сравнительного анализа результатов изучения количественных признаков образцов, выращенных в различные годы (метод приведенных средних) // Труды по прикладной ботанике, генетике и селекции. – 2011. – Т. 167. – С. 36–40. [Brutch NB, Porokhovinova EA. Method of comparative analysis used to access the results of evaluating quantitative characters of plant accessions grown in different years (method of reduced average values). Proceedings of applied botany, genetics and breeding. 2011;167:36-40. (In Russ.)]
  19. StatSoft, Inc. (2013) Electronic Statistics Textbook. Tulsa, OK: StatSoft. Available at: http://www.statsoft.com/textbook/. Accessed November 14, 2018.
  20. Наследов А.Д. Математические методы психологического исследования. Анализ и интерпретация данных. – СПб.: Речь, 2012. – 392 с. [Nasledov AD. Matematicheskiye metody psikhologicheskogo issledovaniya. Analiz i interpretatsiya dannykh. St. Petersburg: Rech'; 2012. 392 p. (In Russ.)]
  21. Ивантер Э.В., Коросов А.В. Введение в количественную биологию. – Петрозаводск: Изд-во Петрозаводского ун-та, 2003. – 203 с. [Ivanter EV, Korosov AV. Vvedeniye v kolichestvennuyu biologiyu. Petrozavodsk: Izdatel’stvo Petrozavodskogo universiteta; 2003. 203 p. (In Russ.)]
  22. Ростова Н.С. Корреляции: структура и изменчивость. – СПб.: Изд-во СПбГУ, 2002. – 307 с. [Rostova NS. Korrelyatsii: struktura i izmenchivost'. Saint Petersburg: Izdatel’stvo SPBGU; 2002. 307 p. (In Russ.)]
  23. Злотина М.М., Киселева А.А., Потокина Е.К. Использование аллель-специфичных маркеров генов Vrn и Ppd для экспресс-диагностики фотопериодической чувствительности и потребности в яровизации мягкой пшеницы и ячменя: Методические указания. – СПб.: ВИР, 2012. – 29 с. [Zlotina MM, Kiseleva AA, Potokina EK. Ispol'zovaniye allel'-spetsifichnykh markerov genov Vrn i Ppd dlya ekspress-diagnostiki fotoperiodicheskoi chuvstvitel'nosti i potrebnosti v yarovizatsii myagkoi pshenitsy i yachmenya. Metodicheskie ukazaniya. Saint Petersburg: VIR; 2012. 29 p. (In Russ.)]
  24. Сокорнова С.В., Гасич Е.Л., Бемова В.Д., Матвеева Т.В. Поиск и видовая идентификация патогенов природно-трансгенного вида Linaria vulgaris // Экологическая генетика. – 2018. – Т. 16. – № 1. – С. 27–34. [Sokornova SV, Gasich EL, Bemova VD, Matveeva TV. Characterization and identification of naturally transgenic species Linaria vulgaris pathogenic mycromycetes. Ecological genetics. 2018;16(2):27-34. (In Russ.)]. https://doi.org/10.17816/ecogen16127-34.
  25. Integrated DNA technologies. Available at: https://eu.idtdna.com. Accessed November 14, 2018.
  26. Notredame C, Higgins DG, Heringa J. T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol. 2000;302(1):205-217. https://doi.org/10.1006/jmbi.2000.4042.
  27. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870-1874. https://doi.org/10.1093/molbev/msw054.
  28. Okonechnikov K, Golosova O, Fursov M, the UGENE team. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics. 2012;28(8):1166-1167. https://doi.org/10.1093/bioinformatics/bts091.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Pedigree of hybrid origine lines involved in the study

Download (136KB)
3. Fig. 2. The proportion of influence (η2) of the linolenic acid degree (HL — high linolenic, ML — medium linolenic, LL — low-linolenic) and random variation (error) according to the results of one-way analysis of variance (ANOVA). * differences between groups are significant; Ho — the total height; Ht — the technical height; Inf — the length of the inflorescence; T1 — the duration of the phase of germination — flowering of the first flower; T2 — the duration the phase flowering of the first flower — ripening of the first boll; T3 — the duration of the phase of the germination — ripenting of the first boll; PAL — palmitic acid; STE — stearic acid; OLE — oleic acid; LIO — linoleic acid; LIN — linolenic acid; IOD — iodine number; F is the Fisher criterion value; p is the probability of similarity of classes (HL, ML, LL); differences — significant differences of these classes according to the results of a posteriori comparison by the Tukey criterion for unequal sampling

Download (138KB)
4. Fig. 3. Correlation pleiades of traits of pland height, duration of phases of vegetative period and the fatty acid composition of seed oil of flax accessions, differing in the level of linolenic acid synthesis: a — high linolenic; b — medium linolenic; c — low linolenic. Ho — the total height; Ht — the technical height; Inf — the length of the inflorescence; T1 — the duration of the phase of germination — flowering of the first flower; T2 — the duration the phase flowering of the first flower — ripening of the first boll; T3 — the duration of the phase of the germination — ripenting of the first boll; PAL — palmitic acid; STE — stearic acid; OLE — oleic acid; LIO — linoleic acid; LIN — linolenic acid; IOD — iodine number

Download (63KB)
5. Fig. 4. Factor loading for 13 studied traits (а) and factor scores for 40 lines of flax (b) in the system of two factors. Ho — the total height; Ht — the technical height; Inf — the length of the inflorescence; T1 — the duration of the phase of germination — flowering of the first flower; T2 — the duration the phase flowering of the first flower — ripening of the first boll; T3 — the duration of the phase of the germination — ripenting of the first boll; PAL — palmitic acid; STE — stearic acid; OLE — oleic acid; LIO — linoleic acid; LIN — linolenic acid; IOD — iodine number . HL — high linolenic, SL — medium linolenic, NL — low-linolenic

Download (229KB)
6. Fig. 5. Molecular marking of LuFAD3A (a–с) and LuFAD3B (d–f) gene: a, d — restriction map of the gene fragment; b, e — chromatograms of the wild type (gc-2) and mutant (gc-391), SNP are marked by arrows; c, f — electrophoregram of restriction products of PCR fragment. HL — high linolenic, ML — medium linolenic, LL — low-linolenic

Download (276KB)

Copyright (c) 2019 Porokhovinova E.A., Shelenga T.V., Matveeva T.V., Pavlov A.V., Grigorieva E.A., Brutch N.B.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies