Role of the plant heterotrimeric G-proteins in the signal pathways regulation

Cover Page

Cite item

Abstract

Animal and fungal heterotrimeric G-proteins are among the well-known regulators of signaling pathways. Plant studies have shown that G-proteins may also be involved in the regulation of many processes. G-proteins are involved in hormonal regulation, control of cell proliferation, response to abiotic factors, control of biotic interactions and many others. It turned out that with a smaller variety of subunits, G-proteins of plants can have a greater variety of mechanisms for activating and transmitting signals. However, for most processes in plants the mechanisms of operation of heterotrimeric G-proteins remain poorly understood. This review is devoted to the analysis of modern ideas about the structure and functioning of heterotrimeric plant G proteins.

About the authors

Andrey D. Bovin

All-Russia Research Institute for Agricultural Microbiology

Email: andy-piter2007@mail.ru
ORCID iD: 0000-0003-4061-435X

PhD Student, Laboratory of Molecular and Cellular Biology

Russian Federation, 3, Podbelsky highway, Pushkin, Saint-Petersburg, 196608

Elena A. Dolgikh

All-Russia Research Institute for Agricultural Microbiology

Author for correspondence.
Email: dol2helen@yahoo.com
ORCID iD: 0000-0002-5375-0943
SPIN-code: 4453-2060
Scopus Author ID: 6603496335
ResearcherId: G-6363-2017

Doctor of Science, Group Leader, Laboratory of Molecular and Cellular Biology

Russian Federation, 3, Podbelsky highway, Pushkin, Saint-Petersburg, 196608

References

  1. Urano D, Jones AM. Heterotrimeric G protein-coupled signaling in plants. Annu Rev Plant Biol. 2014;65:365-384. https://doi.org/10.1146/annurev-arplant-050213-040133.
  2. Scherer GF. Stimulation of growth and phospholipase A, by the peptides mastoparan and melittin and by the auxin 2, 4-dichlorophenoxyacetic acid. Plant Growth Regulation. 1992;11(2):153-157. https://doi.org/10.1007/bf00024069.
  3. White I, Wise A, Millner P. Evidence for G-protein-linked receptors in higher plants: stimulation of GTP-gamma-S binding to membrane fractions by the mastoparan analogue mas 7. Planta. 1993;191(2):285-288. https://doi.org/10.1007/bf00199762.
  4. Legendre L, Yueh YG, Crain R, et al. Phospholipase C activation during elicitation of the oxidative burst in cultured plant cells. J Biol Chem. 1993;268(33):24559-24563.
  5. Aharon GS, Gelli A, Snedden WA, Blumwald E. Activation of a plant plasma membrane Ca2+ channel by TGα1, a heterotrimeric G protein α-subunit homologue. FEBS Lett. 1998;424(1-2):17-21. https://doi.org/10.1016/s0014-5793(98)00129-x.
  6. Zaina S, Reggiani R, Bertani A. Preliminary evidence for involvement of GTP-binding protein(s) in auxin signal transduction in rice (Oryza sativa L.) coleoptile. J Plant Physiol. 1990;136(6):653-658. https://doi.org/10.1016/s0176-1617(11)81339-8.
  7. Warpeha KM, Hamm HE, Rasenick MM, Kaufman LS. A blue-light-activated GTP-binding protein in the plasma membranes of etiolated peas. Proc Natl Acad Sci USA. 1991;88(20):8925-9. https://doi.org/10.1073/pnas.88.20.8925.
  8. Warpeha KM, Kaufman LS, Briggs WR. A flavoprotein may mediate the blue light-activated binding of guanosine 5’-triphosphate to isolated plasma membranes of Pisum sativum L. Photochem Photobiol. 1992;55(4):595-603. https://doi.org/10.1111/j.1751-1097.1992.tb04282.x.
  9. Romero LC, Sommer D, Gotor C, Song PS. G-proteins in etiolated Avena seedlings. Possible phytochrome regulation. FEBS Lett. 1991;282(2):341-346. https://doi.org/10.1016/0014-5793(91)80509-2.
  10. Perfus-Barbeoch L, Jones AM, Assmann SM. Plant heterotrimeric G protein function: Insights from Arabidopsis and rice mutants. Curr Opin Plant Biol. 2004;7(6): 719-31. https://doi.org/10.1016/j.pbi.2004.09.013.
  11. Lease KA, Wen J, Li J, et al. A mutant Arabidopsis heterotrimeric G-protein beta subunit affects leaf, flower, and fruit development. Plant Cell. 2001;13(12):2631-41. https://doi.org/10.1105/tpc.010315.
  12. Liang X, Ding P, Lian K, et al. Arabidopsis heterotrimeric G proteins regulate immunity by directly coupling to the FLS2 receptor. Elife. 2016;5:e13568. https://doi.org/10.7554/eLife.13568.
  13. Ishikawa A. The Arabidopsis G-protein beta-subunit is required for defense response against Agrobacterium tumefaciens. Biosci Biotechnol Biochem. 2009;73(1):47-52. https://doi.org/10.1271/bbb.80449.
  14. Maruta N, Trusov Y, Brenya E, et al. Membrane-localized extra-large G proteins and Gβγ of the heterotrimeric G proteins form functional complexes engaged in plant immunity in Arabidopsis. Plant Physiol. 2015;167(3):1004-1016. https://doi.org/10.1104/pp.114.255703.
  15. Pingret J-L. Rhizobium nod factor signaling: evidence for a G protein mediated transduction mechanism. Plant Cell. 1998;10(5):659-672. https://doi.org/10.1105/tpc.10.5.659.
  16. Rogato A, Valkov VT, Alves LM, et al. Down-regulated Lotus japonicus GCR1 plants exhibit nodulation signalling pathways alteration. Plant Sci. 2016;247:71-82. https://doi.org/10.1016/j.plantsci.2016.03.007.
  17. Choudhury SR, Pandey S. Phosphorylation-dependent regulation of G-protein cycle during nodule formation in soybean. Plant Cell. 2015;27(11):3260-3276. https://doi.org/10.1105/tpc.15.00517.
  18. Hebe G, Hager A, Salzer P. Initial signalling processes induced by elicitors of ectomycorrhiza-forming fungi in spruce cells can also be triggered by G-protein-activating mastoparan and protein phosphatase-inhibiting cantharidin. Planta. 1999;207(3):418-425. https://doi.org/10.1007/s004250050500.
  19. Aranda-Sicilia MN, Trusov Y, Maruta N, et al. Heterotrimeric G proteins interact with defense-related receptor-like kinases in Arabidopsis. J Plant Physiol. 2015;188: 44-48. https://doi.org/10.1016/j.jplph.2015.09.005.
  20. Neer EJ. G proteins: critical control points for transmembrane signals. Protein Sci. 2008;3(1):3-14. https://doi.org/10.1002/pro.5560030102.
  21. Iismaa TP, Biden TJ, Shine J. G protein-coupled receptors. Berlin, Heidelberg: Springer Berlin Heidelberg; 1995. P. 135-136.
  22. Oldham WM, Hamm HE. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol. 2008;9(1):60-71. https://doi.org/10.1038/nrm2299.
  23. Siderovski DP, Willard FS. The GAPs, GEFs, and GDIs of heterotrimeric G-protein alpha subunits. Int J Biol Sci. 2005;1(2):51-66. https://doi.org/10.7150/ijbs.1.51.
  24. Stateczny D, Oppenheimer J, Bommert P. G-protein signaling in plants: minus times minus equals plus. Curr Opin Plant Biol. 2016;34:127-135. https://doi.org/ 10.1016/j.pbi.2016.11.001.
  25. Brown NA, Schrevens S, van Dijck P, Goldman GH. Fungal G-protein-coupled receptors: Mediators of pathogenesis and targets for disease control. Nat Microbiol. 2018;3(4):402-414. https://doi.org/10.1038/s41564-018-0127-5.
  26. Li L, Wright SJ, Krystofova S, et al. Heterotrimeric G protein signaling in filamentous fungi. Annu Rev Microbiol. 2007;61:423-452. https://doi.org/10.1146/annurev.micro.61.080706.093432.
  27. Hoffman CS. Except in every detail: comparing and contrasting G-protein signaling in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Eukaryot Cell. 2005;4(3):495-503. https://doi.org/10.1128/EC.4.3.495-503.2005.
  28. Moretti M, Wang L, Grognet P, et al. Three regulators of G protein signaling differentially affect mating, morphology and virulence in the smut fungus Ustilago maydis. Mol Microbiol. 2017;105(6):901-921. https://doi.org/ 10.1111/mmi.13745.
  29. Xue C, Hsueh Y-P, Heitman J. Magnificent seven: roles of G protein-coupled receptors in extracellular sensing in fungi. FEMS Microbiol Rev. 2008;32(6):1010-1032. https://doi.org/10.1111/j.1574-6976.2008.00131.x.
  30. Krishnan A, Almén MS, Fredriksson R, Schiöth HB. The origin of GPCRs: identification of mammalian like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in fungi. PLoS One. 2012;7(1):e29817. https://doi.org/10.1371/journal.pone.0029817.
  31. Lafon A, Han K, Seo J, et al. G-protein and cAMP-mediated signaling in aspergilli: a genomic perspective. Fungal Genet Biol. 2006;43(7):490-502. https://doi.org/10.1016/j.fgb.2006.02.001.
  32. Chen J-G, Willard FS, Huang J, et al. A seven-transmembrane RGS protein that modulates plant cell proliferation. Science. 2003;301(5640):1728-1731. https://doi.org/10.1126/science.1087790.
  33. Trusov Y, Botella JR. Plant G-proteins come of age: breaking the bond with animal models. Front Chem. 2016;4:24. https://doi.org/10.3389/fchem.2016.00024.
  34. Urano D, Jones JC, Wang H, et al. G protein activation without a GEF in the plant kingdom. PLoS Genet. 2012;8(6):e1002756. https://doi.org/10.1371/journal.pgen.1002756.
  35. Johnston CA, Taylor JP, Gao Y, et al. GTPase acceleration as the rate-limiting step in Arabidopsis G protein-coupled sugar signaling. Proc Natl Acad Sci USA. 2007;104(44):17317-17322. https://doi.org/10.1073/pnas.0704751104.
  36. Urano D, Phan N, Jones JC, et al. Endocytosis of the seven-transmembrane RGS1 protein activates G-protein-coupled signalling in Arabidopsis. Nat Cell Biol. 2012;14(10):1079-1088. https://doi.org/10.1038/ncb2568.
  37. Hackenberg D, McKain MR, Lee SG, et al. Gα and regulator of G-protein signaling (RGS) protein pairs maintain functional compatibility and conserved interaction interfaces throughout evolution despite frequent loss of RGS proteins in plants. New Phytol. 2017;216(2):562-75. https://doi.org/10.1111/nph.14180.
  38. Ullah H, Chen J, Temple B, et al. The beta-subunit of the Arabidopsis G protein negatively regulates auxin-induced cell division and affects multiple developmental processes. Plant Cell. 2003;15(2):393-409. https://doi.org/10.1105/tpc.006148.
  39. Pfeuffer T, Helmreich EJ. Activation of pigeon erythrocyte membrane adenylate cyclase by guanylnucleotide analogues and separation of a nucleotide binding protein. J Biol Chem. 1975;250(3):867-876.
  40. Sunahara RK. Isoforms of mammalian adenylyl cyclase: multiplicities of signaling. Mol Interv. 2002;2(3):168-184. https://doi.org/10.1124/mi.2.3.168.
  41. McCudden CR, Hains MD, Kimple RJ, et al. G-protein signaling: back to the future. Cell Mol Life Sci. 2005;62(5):551-577. https://doi.org/10.1007/s00018-004-4462-3.
  42. Kadamur G, Ross EM. Mammalian phospholipase C. Annu Rev Physiol. 2013;75(1):127-154. https://doi.org/10.1146/annurev-physiol-030212-183750.
  43. Berridge MJ. The inositol trisphosphate/calcium signaling pathway in health and disease. Physiol Rev. 2016;96(4):1261-1296. https://doi.org/10.1152/physrev.00006.2016.
  44. Dhanasekaran DN, Kashef K, Lee CM, et al. Scaffold proteins of MAP-kinase modules. Oncogene. 2007;26(22):3185-3202. https://doi.org/10.1038/sj.onc.1210411.
  45. Liu R, Wong W, IJzerman AP. Human G protein-coupled receptor studies in Saccharomyces cerevisiae. Biochem Pharmacol. 2016;114:103-115. https://doi.org/10.1016/j.bcp.2016.02.010.
  46. Lomovatskaya LA, Kuzakova OV, Romanenko AS, Goncharova AM. Activities of adenylate cyclase and changes in camp concentration in root cells of pea seedlings infected with Mutualists and Phytopathogens. Russ J Plant Physiol. 2018;65(4):588-597. https://doi.org/10.1134/S1021443718030056.
  47. Chatukuta P, Dikobe TB, Kawadza DT, et al. An arabidopsis clathrin assembly protein with a predicted role in plant defense can function as an adenylate cyclase. Biomolecules. 2018;8(2). pii: E15. https://doi.org/10.3390/biom8020015.
  48. Isner JC, Maathuis FJ. cGMP signalling in plants: from enigma to main stream. Funct Plant Biol. 2018;45(1-2): 93-101. https://doi.org/10.1071/fp16337.
  49. den Hartog M, Musgrave A, Munnik T. Nod factor-induced phosphatidic acid and diacylglycerol pyrophosphate formation: a role for phospholipase C and D in root hair deformation. Plant J. 2001;25(1):55-65. https://doi.org/10.1046/j.1365-313x.2001.00931.x.
  50. Sun J, Liu X, Pan Y. The physical interaction between LdPLCs and Arabidopsis G beta in a yeast two-hybrid system. Front Agric China. 2011;5(1):64-71. https://doi.org/10.1007/s11703-011-1063-9.
  51. Zhao J, Wang X. Arabidopsis phospholipase dalpha 1 interacts with the heterotrimeric G-protein α-subunit through a motif analogous to the DRY motif in G-protein-coupled receptors. J Biol Chem. 2004;279(3):1794-1800. https://doi.org/10.1074/jbc.M309529200.
  52. Zheng L, Krishnamoorthi R, Zolkiewski M, Wang X. Distinct Ca2+ binding properties of novel C2 domains of plant phospholipase dalpha and β. J Biol Chem. 2000;275(26):19700-19706.
  53. Cheng Z, Li JF, Niu Y, et al. Pathogen-secreted proteases activate a novel plant immune pathway. Nature. 2015;521(7551):213-216. https://doi.org/10.1038/nature14243.
  54. Yuan GL, Li HJ, Yang WC. The integration of Gβ and MAPK signaling cascade in zygote development. Sci Rep. 2017;7(1):8732. https://doi.org/10.1038/s41598-017-08230-4.
  55. Nakashima A, Chen L, Thao NP, et al. RACK1 Functions in rice innate immunity by interacting with the Rac1 immune complex. Plant Cell. 2008;20(8):2265-79. https://doi.org/10.1105/tpc.107.054395.
  56. Suharsono U, Fujisawa Y, Kawasaki T, et al. The heterotrimeric G protein alpha subunit acts upstream of the small GTPase Rac in disease resistance of rice. Proc Natl Acad Sci. 2002;99(20):13307-13312. https://doi.org/10.1073/pnas.192244099.
  57. Petry A, Görlach A. Regulation of NADPH oxidases by G protein-coupled receptors. Antioxid Redox Signal. 2019;30(1):74-94. https://doi.org/10.1089/ars.2018.7525.
  58. Wrzaczek M, Brosché M, Kangasjärvi J. ROS signaling loops – production, perception, regulation. Curr Opin Plant Biol. 2013;16(5):575-582. https://doi.org/10.1016/j.pbi.2013.07.002.
  59. Wong HL, Pinontoan R, Hayashi K, et al. Regulation of rice NADPH oxidase by binding of rac GTPase to its N-terminal extension. Plant Cell. 2007;19(12):4022-34. https://doi.org/10.1105/tpc.107.055624.
  60. Sirichandra C, Gu D, Hu HC, et al. Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase. FEBS Lett. 2009;583(18):2982-2986. https://doi.org/10.1016/j.febslet.2009.08.033.
  61. Suzuki N, Miller G, Morales J, et al. Respiratory burst oxidases: the engines of ROS signaling. Curr Opin Plant Biol. 2011;14(6):691-699. https://doi.org/10.1016/j.pbi.2011.07.014.
  62. Zeevaart JA, Creelman RA. Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol. 1988;39(1):439-473. https://doi.org/10.1146/annurev.pp.39.060188.002255.
  63. Wang XQ, Ullah H, Jones AM, Assmann SM. G protein regulation of ion channels and abscisic acid signaling in Arabidopsis guard cells. Science. 2001;292(5524):2070-2072. https://doi.org/10.1126/science.1059046.
  64. Fan L-M, Zhang W, Chen J-G, et al. Abscisic acid regulation of guard-cell K+ and anion channels in Gβ- and RGS-deficient Arabidopsis lines. Proc Natl Acad Sci. 2008;105(24):8476-8481. https://doi.org/10.1073/pnas.0800980105.
  65. Mori IC, Murata Y, Yang Y, et al. CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2+-permeable channels and stomatal closure. PLoS Biol. 2006;4(10):e327. https://doi.org/10.1371/journal.pbio.0040327.
  66. Lee SC, Lan W, Buchanan BB, Luan S. A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proc Natl Acad Sci. 2009;106(50):21419-21424. https://doi.org/10.1073/pnas.0910601106.
  67. Geiger D, Scherzer S, Mumm P, et al. Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc Natl Acad Sci. 2009;106(50):21425-21430. https://doi.org/10.1073/pnas.0912021106.
  68. Geiger D, Scherzer S, Mumm P, et al. Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proc Natl Acad Sci. 2010;107(17):8023-8028. https://doi.org/10.1073/pnas.0912030107.
  69. Vlad F, Rubio S, Rodrigues A, et al. Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in Arabidopsis. Plant Cell. 2009;21(10):3170-3184. https://doi.org/10.1105/tpc.109.069179.
  70. Tsugama D, Liu H, Liu S, Takano T. Arabidopsis heterotrimeric G protein β subunit interacts with a plasma membrane 2C-type protein phosphatase, PP2C52. Biochim Biophys Acta. 2012;1823(12):2254-60. https://doi.org/10.1016/j.bbamcr.2012.10.001.
  71. Hauser F, Li Z, Waadt R, Schroeder JI. SnapShot: abscisic acid signaling. Cell. 2017;171(7):1708-1708.e0. https://doi.org/10.1016/j.cell.2017.11.045.
  72. Tunc-Ozdemir M, Jones AM. Ligand-induced dynamics of heterotrimeric G protein-coupled receptor-like kinase complexes. PLoS One. 2017;12(2):e0171854. https://doi.org/10.1371/journal.pone.0171854.
  73. Choudhury SR, Pandey S. Heterotrimeric G-protein complex and its role in regulation of nodule development. Exocytosis Cell Res. 2016;27(2):29-35.
  74. Botella JR. Can heterotrimeric G proteins help to feed the world? Trends Plant Sci. 2012;17(10):563-568. https://doi.org/10.1016/j.tplants.2012.06.002.
  75. Yadav DK, Islam SM, Tuteja N. Rice heterotrimeric G-protein gamma subunits (RGG1 and RGG2) are differentially regulated under abiotic stress. Plant Signal Behav. 2012;7(7):733-40. https://doi.org/10.4161/psb.20356.
  76. Swain DM, Sahoo RK, Srivastava VK, et al. Function of heterotrimeric G-protein γ subunit RGG1 in providing salinity stress tolerance in rice by elevating detoxification of ROS. Planta. 2017;245(2):367-383. https://doi.org/10.1007/s00425-016-2614-3.
  77. Ullah H, Chen J-G, Temple B, et al. The beta-subunit of the Arabidopsis G protein negatively regulates auxin-induced cell division and affects multiple developmental processes. Plant Cell. 2003;15(2):393-409. https://doi.org/10.1105/tpc.006148.
  78. Jones AM. A reevaluation of the role of the heterotrimeric G protein in coupling light responses in Arabidopsis. Plant Physiol. 2003;131(4):1623-1627. https://doi.org/10.1104/pp.102.017624.
  79. Lian H, Xu P, He S, et al. Photoexcited CRYPTOCHROME 1 interacts directly with G protein β subunit AGB1 to regulate the DNA-binding activity of HY5 and photomorphogenesis in Arabidopsis. Mol Plant. 2018;11(10):1248-1263. https://doi.org/10.1016/j.molp.2018.08.004.
  80. Ullah H, Chen JG, Young JC, et al. Modulation of cell proliferation by heterotrimeric G protein in Arabidopsis. Science. 2001;292(5524):2066-2069. https://doi.org/10.1126/science.1059040.
  81. Chen JG, Gao Y, Jones AM. Differential roles of Arabidopsis heterotrimeric G-protein subunits in modulating cell division in roots. Plant Physiol. 2006;141(3):887-897. https://doi.org/10.1104/pp.106.079202.
  82. Betsuyaku S, Takahashi F, Kinoshita A, et al. Mitogen-activated protein kinase regulated by the CLAVATA receptors contributes to shoot apical meristem homeostasis. Plant Cell Physiol. 2011;52(1):14-29. https://doi.org/10.1093/pcp/pcq157.
  83. Laux T, Mayer KF, Berger J, et al. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development. 1996;122(1):87-96.
  84. Fletcher JC, Brand U, Running MP, et al. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science. 1999;283(5409):1911-1914. https://doi.org/10.1126/science.283.5409.1911.
  85. Somssich M, Je BI, Simon R, Jackson D. CLAVATA- WUSCHEL signaling in the shoot meristem. Development. 2016;143(18):3238-48. https://doi.org/10.1242/dev.133645.
  86. Kinoshita A, Betsuyaku S, Osakabe Y, et al. RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in Arabidopsis. Development. 2010;137(22):3911-20. https://doi.org/10.1242/dev.048199.
  87. Ishida T, Tabata R, Yamada M, et al. Heterotrimeric G proteins control stem cell proliferation through CLAVATA signaling in Arabidopsis. EMBO Rep. 2016;17(8):1236. https://doi.org/10.15252/embr.201678010.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Comparison of the ways of activation of heterotrimeric G-proteins in animals (а) and plants (b, c); b — RGS-dependent pathway of activation, c — RGS-independent pathway of activation (according to [24], as amended)

Download (61KB)
3. Fig. 2. Scheme of the organization of subunits of heterotrimeric G-proteins and plant RGS. Given the designation of the corresponding genes and accession numbers in the databases for some model plants. A scale bar corresponding to 100 amino acid residues is shown. TM — transmembrane domain; CaaX — prenylation domain (according to [24], as amended)

Download (126KB)
4. Fig. 3. Integration of heterotrimeric G-proteins, MAP-kinases with the RACK1 scaffold protein and Rac1 small GTPase in signaling pathways

Download (33KB)

Copyright (c) 2019 Bovin A.D., Dolgikh E.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».