Гистологическая и ультраструктурная организация клубеньков мутанта гороха (Pisum sativum) sgefix–-5 ПО ГЕНУ Sym33, кодирующему транскрипционный фактор PsCYCLOPS/PsIPD3

Обложка

Цитировать

Полный текст

Аннотация

Транскрипционный фактор CYCLOPS/IPD3 является ключевым активатором органогенеза симбиотических клубеньков, он также принимает участие в развитии инфекционных нитей и симбиосом. У гороха было выявлено три мутантные аллели по этому гену (sym33-1sym33-3). Наиболее изучены фенотипические проявления аллели sym33-3 у мутанта SGEFix¯-2, характеризующегося «leaky»-фенотипом — формированием двух типов клубеньков: белых и розоватых. Аллель sym33-2 у мутанта SGEFix¯-5 была описана как строгая аллель, тем не менее ее фенотипические проявления не были детально изучены. В данном исследовании проанализирована гистологическая и ультраструктурная организация клубеньков мутанта SGEFix¯-5. В клубеньках наблюдались «запертые» инфекционные нити, из которых не происходил выход бактерий в цитоплазму растительной клетки. При этом в некоторых нитях отмечалась деградация бактерий, что может свидетельствовать об активации сильных защитных реакций в клубеньках мутанта SGEFix¯-5.

Об авторах

Анна Викторовна Цыганова

ФГБНУ «Всероссийский научно-исследовательский институт сельскохозяйственной микробиологии»

Email: isaakij@mail.ru
ORCID iD: 0000-0003-3505-4298

канд. биол. наук, ведущий научный сотрудник, лаборатория молекулярной и клеточной биологии

Россия, 196608, г. Санкт-Петербург, Пушкин 8, ш. Подбельского, д.3

Кира Андреевна Иванова

ФГБНУ «Всероссийский научно-исследовательский институт сельскохозяйственной микробиологии»

Email: kivanova@arriam.ru
ORCID iD: 0000-0002-9119-065X

младший научный сотрудник, лаборатория молекулярной и клеточной биологии

Россия, 196608, г. Санкт-Петербург, Пушкин 8, ш. Подбельского, д.3

Виктор Евгеньевич Цыганов

ФГБНУ «Всероссийский научно-исследовательский институт сельскохозяйственной микробиологии»

Автор, ответственный за переписку.
Email: tsyganov@arriam.spb.ru
ORCID iD: 0000-0003-3105-8689
SPIN-код: 6532-1332
Scopus Author ID: 7006136325
ResearcherId: Q-5634-2016
http://arriam.ru/departments/laboratoriya-molekulyarnoj-i-kletochnoj-biologii/

д-р биол. наук, заведующий лабораторией молекулярной и клеточной биологии

Россия, 196608, г. Санкт-Петербург, Пушкин 8, ш. Подбельского, д.3

Список литературы

  1. Tsyganov VE, Voroshilova VA, Priefer UB, et al. Genetic dissection of the initiation of the infection process and nodule tissue development in the Rhizobium-pea (Pisum sativum L.) symbiosis. Ann Bot. 2002;89(4):357-366. https://doi.org/10.1093/aob/mcf051.
  2. Tsyganova AV, Tsyganov VE. Plant genetic control over infection thread development during legume-rhizobium symbiosis. In: Symbiosis. Ed. by E.C. Rigobelo. London: IntechOpen; 2018. P. 23-52. https://doi.org/10.5772/intechopen.70689.
  3. Soyano T, Hayashi M. Transcriptional networks leading to symbiotic nodule organogenesis. Curr Opin Plant Biol. 2014;20:146-154. https://doi.org/10.1016/j.pbi.2014.07.010.
  4. Messinese E, Mun JH, Yeun LH, et al. A novel nuclear protein interacts with the symbiotic DMI3 calcium- and calmodulin-dependent protein kinase of Medicago truncatula. Mol Plant Microbe Interact. 2007;20(8):912-921. https://doi.org/10.1094/MPMI-20-8-0912.
  5. Yano K, Yoshida S, Muller J, et al. CYCLOPS, a mediator of symbiotic intracellular accommodation. Proc Natl Acad Sci USA. 2008;105(51):20540-20545. https://doi.org/10.1073/pnas.0806858105.
  6. Ovchinnikova E, Journet EP, Chabaud M, et al. IPD3 controls the formation of nitrogen-fixing symbiosomes in pea and Medicago spp. Mol Plant Microbe Interact. 2011;24(11):1333-1344. https://doi.org/10.1094/MPMI-01-11-0013.
  7. Singh S, Katzer K, Lambert J, et al. CYCLOPS, a DNA-binding transcriptional activator, orchestrates symbiotic root nodule development. Cell Host Microbe. 2014;15(2):139-152. https://doi.org/10.1016/j.chom.2014.01.011.
  8. Tsyganov VE, Borisov AY, Rozov SM, Tikhonovich IA. New symbiotic mutants of pea obtained after mutagenesis of laboratory line SGE. Pisum Genet. 1994;26:36-37.
  9. Tsyganov VE, Morzhina EV, Stefanov SY, et al. The pea (Pisum sativum L.) genes sym33 and sym40 control infection thread formation and root nodule function. Mol Gen Genet. 1998;259(5):491-503. https://doi.org/10.1007/s004380050840.
  10. Engvild KC. Nodulation and nitrogen fixation mutants of pea, Pisum sativum. Theor Appl Genet. 1987;74(6):711-713. https://doi.org/10.1007/BF00247546.
  11. Tsyganov VE, Voroshilova VA, Rozov SM, et al. A new series of pea symbiotic mutants induced in the line SGE. Russ J Genet Appl Res. 2013;3(2):156-162. https://doi.org/10.1134/s2079059713020093.
  12. Safronova VI, Novikova NI. Comparison of two me thods for root nodule bacteria preservation: lyophilization and liquid nitrogen freezing. J Microbiol Methods. 1996;24(3):231-237. https://doi.org/10.1016/0167-7012(95)00042-9.
  13. Wang TL, Wood EA, Brewin NJ. Growth regulators, Rhizobium and nodulation in peas: The cytokinin content of a wild-type and a Ti-plasmid-containing strain of R. leguminosarum. Planta. 1982;155(4):350-355. https://doi.org/10.1007/BF00429464.
  14. Fahraeus G. The infection of clover root hairs by nodu le bacteria studied by a simple glass slide technique. J Gen Microbiol. 1957;16(2):374-381. https://doi.org/10.1099/00221287-16-2-374.
  15. Kitaeva AB, Demchenko KN, Tikhonovich IA, et al. Comparative analysis of the tubulin cytoskeleton organization in nodules of Medicago truncatula and Pisum sativum: bacterial release and bacteroid positioning correlate with characteristic microtubule rearrangements. New Phytol. 2016;210(1):168-183. https://doi.org/10.1111/nph.13792.
  16. Voroshilova VA, Boesten B, Tsyganov VE, et al. Effect of mutations in Pisum sativum L. genes blocking different stages of nodule development on the expression of late symbiotic genes in Rhizobium leguminosarum bv. viciae. Mol Plant Microbe Interact. 2001;14(4):471-476. https://doi.org/10.1094/MPMI.2001.14.4.471.
  17. Tsyganov VE, Seliverstova EV, Voroshilova VA, et al. Double mutant analysis of sequential functioning of pea (Pisum sativum L.) genes Sym13, Sym33, and Sym40 during symbiotic nodule deve lopment. Russ J Genet Appl Res. 2011;1(5):343-348. https://doi.org/10.1134/s2079059711050145.
  18. Ivanova KA, Tsyganova AV, Brewin NJ, et al. Induction of host defences by Rhizobium during ineffective nodulation of pea (Pisum sativum L.) carrying symbio tically defective mutations sym40 (PsEFD), sym33 (PsIPD3/PsCYCLOPS) and sym42. Protoplasma. 2015;252(6):1505-1517. https://doi.org/10.1007/s00709-015-0780-y.
  19. Tsyganova AV, Seliverstova EV, Brewin NJ, Tsyganov VE. Bacterial release is accompanied by ectopic accumulation of cell wall material around the vacuole in nodules of Pisum sativum sym33-3 allele enco ding transcription factor PsCYCLOPS/PsIPD3. Protoplasma. Forthcoming 2019.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Гистологическая организация клубеньков мутантного генотипа SGEFix–-5 (sym33-2): а — сагиттальный срез клубенька; б — колонизированные клетки с инфекционными нитями. Наложение единичных оптических срезов дифференциально-интерференционного контраста и красного каналов (ядра и бактерии), представленных в градациях серого. КК — колонизированная клетка, Я — ядро, ИН — инфекционная нить, стрелки указывают на инфекционные нити. Масштабная линейка: а — 50 мкм, б — 10 мкм

3. Рис. 2. Ультраструктурная организация клубеньков мутантного генотипа SGEFix–-5 (sym33-2): а — колонизированные клетки; б — инфекционные нити с утолщенными стенками и интактными бактериями в матриксе; в — инфекционная нить с утолщенными стенками и деградирующими бактериями, собранными в кластеры, г — инфекционная нить с полностью деградировавшими бактериями в просвете. КК — колонизированная клетка, ИН — инфекционная нить, СИН — стенка инфекционной нити, КС — клеточная стенка, Б — бактерия, ДБ — деградирующая бактерия, стрелки указывают на везикулы, звездочки — на кластеры бактерий внутри инфекционной нити. Масштабная линейка: а — 10 мкм, б–г — 1 мкм


© Цыганова А.В., Иванова К.А., Цыганов В.Е., 2019

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.
 


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».