Assessment of the equivalence of technical materials of analogous pesticides to original active substances on the basis of “mutagenicity” criterion

Cover Page

Cite item

Abstract

In the Russian Federation about 600 active ingredients of pesticides are currently registered. A large share among them is occupied by analogous pesticides (generics), which may differ in their properties from the original products due to an increased level or altered composition of impurities. Therefore, to ensure the safe use of analogous pesticides, it is necessary to evaluate their chemical and toxicological equivalence. The analysis of algorithms described in international documents and implemented in practice in some countries for determination of the equivalence of technical materials of analog pesticides is presented. Particular attention is paid to the evaluation of pesticide safety on the basis of the “mutagenicity” criterion. The applicability of different methods for genotoxic activity determination to confirm the equivalence of active substances of pesticides-analogues to patented products is discussed. A brief review of the results of the researches confirming the need to assess the genotoxicity of all technical materials of analogous pesticides with a view to preventing the entry of hazardous substances into the consumer market is presented.

About the authors

Nataliya A. Ilyushina

Federal Scientific Center of Hygiene named after F.F. Erisman of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Author for correspondence.
Email: Ilyushina-na@mail.ru
ORCID iD: 0000-0001-9122-9465
SPIN-code: 2339-6961
Scopus Author ID: 36919949400

PhD, Biology, Head of Department of Genetic Toxicology

Russian Federation, 2 Semashko st., Mytishchi, Moscow Region, 141014

References

  1. fao.org [Internet]. FAOSTAT. Pesticides use. Food and Agriculture Organization of the United Nations; 2018 [updated 2019 Mar 4; cited 2018 Dec 20]. Available from: http://www.fao.org/faostat/en/#data/RP.
  2. Baarschers WH, Bharath AI, Hazenberg M, Todd JE. Fungitoxicity of methoxychlor and fenitrothion and the environmental impact of their metabolites. Canad J Botanic. 1980;58:426-431. https://doi.org/10.1139/b80-048.
  3. Somasundaram L, Coats JR, Racke KD, Stahr HM. Application of the Microtox system to assess the toxicity of pesticides and their hydrolysis metabolites. Bull Environ Contam Toxicol. 1990;44(2):254-259. https://doi.org/10.1007/BF01700144.
  4. Cloyd RA. Pesticide metabolites [Internet]. Kansas State University; 2012. [cited 2018 Dec 20]. Available from: https://www.bookstore.ksre.ksu.edu/pubs/MF3070.pdf.
  5. Romero A, Ramos E, Ares I, et al. Fipronil sulfone induced higher cytotoxicity than fipronil in SH-SY5Y cells: Protection by antioxidants. Toxicol Lett. 2016;252:42-49. https://doi.org/10.1016/j.toxlet.2016.04.005.
  6. Gälli I, Rich HW, Scholtz R. Toxicity of organophosphate insecticides and their metabolites to the water flea Daphnia magna, the Microtox test and an acetylcholinesterase inhibition test. Aquatic Toxicology. 1994;30(3):259-269. https://doi.org/10.1016/0166-445x(94)90063-9.
  7. US Environmental Protection Agency. Ethylene bisdithiocarbamates (EBDCs); Notice of intent to cancel and conclusion of Special Review. Federal Register. 1992;57(41):7434-7530.
  8. European Commission Health & Consumer Protection Directorate-General. Review report for the active substance mancozeb [Internet]. SANCO/4058/2001 [revised 2009 Apr 4; cited 2018 Dec 20]. Available from: http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=activesubstance.ViewReview&id=194.
  9. Wang F, Gao J, Chen L, et al. Enantioselective bioaccumulation and metabolism of lactofen in zebrafish Danio rerio and combined effects with its metabolites. Chemosphere. 2018;213:443-452. https://doi.org/10.1016/j.chemosphere.2018.09.052.
  10. Madej K, Kalenik TK, Piekoszewski W. Sample preparation and determination of pesticides in fat-containing foods. Food Chem. 2018;269:527-541. https://doi.org/10.1016/j.foodchem.2018.07.007.
  11. Ellsworth RE, Kostyniak PJ, Chi LH, et al. Organochlorine pesticide residues in human breast tissue and their relationships with clinical and pathological characteristics of breast cancer. Environ Toxicol. 2018. https://doi.org/10.1002/tox.22573.
  12. Barghi M, Jin X, Lee S, et al. Accumulation and exposure assessment of persistent chlorinated and fluorinated contaminants in Korean birds. Sci Total Environ. 2018;645:220-228. https://doi.org/10.1016/j.scitotenv.2018.07.040.
  13. Бочков Н.П., Пузырев В.П., Смирнихина С.А. Клиническая генетика: учебник / Под ред. акад. РАМН Н.П. Бочкова. – 4-е изд., доп. и перераб. – М.: ГЭОТАР-Медиа; 2011. – 592 с. [Bochkov NP, Puzyrev VP, Smirnihina SA. Klinicheskaya genetika: uchebnik. Ed. by academician RAMN N.P. Bochkov. 4th ed. Moscow: GEOTAR-Media; 2011. 592 p. (In Russ.)]
  14. Saleh MA. Mutagenic and carcinogenic effects of pesticides. J Environ Sci Health B. 1980;15(6):907-927. https://doi.org/10.1080/03601238009372222.
  15. Alabi OA, Ogunwenmo KO, Adebusuyi TT, et al. Genotoxic potential of pirimiphosmethyl organophosphate pesticide using the mouse bone marrow erythrocyte micronucleus and the sperm morphology assay. J Environment Occupation Sci. 2014;3(2):81-86. https://doi.org/10.5455/jeos.20140303015734.
  16. Федоров Л.А. Пестициды — токсический удар по биосфере и человеку. (Серия «Уроки XX века» / Центр экол. политики России). – М.: Наука, 1999. – 461 с. [Fedorov LA. Pesticidy – toksicheskii udar po biosfere i cheloveku (Seriya “Uroki XX veka” / Tsentr ekol. politiki Rossii). Moscow: Nauka; 1999. 461 р. (In Russ.)]
  17. Илюшина Н.А., Егорова О.В., Масальцев Г.В., и др. Мутагенность и канцерогенность пестицидов, опасность для здоровья человека. Систематический обзор // Здравоохранение Российской Федерации. – 2017. – Т. 61. – № 2. – С. 96–102. [Ilyushina NA, Egorova OV, Masal’sev GV, et al. The mutagenicity and carcinogenicity of pesticides and hazards for human health: a systematic rewiew. Zdravookhranenie Rossiiskoi Federatsii. 2017;61(2):96-102.(In Russ.)]. https://doi.org/10.18821/0044-197X-2017-61-2-96-102.
  18. Федеральный закон Российской Федерации от 19.07.1997 № 109-ФЗ (ред. от 17.04.2017) «О безопасном обращении с пестицидами и агрохимикатами». [Federal Law of Russian Federation No. 109-FZ (red. ot 17.04.2017) “O bezopasnom obrashhenii s pesticidami i agrohimikatami” dated 1997 July 19. (In Russ.)]. Доступно по: http://legalacts.ru/doc/federalnyi-zakon- ot-19071997-n-109-fz-o/. Ссылка активна на 26.12.2018.
  19. Приказ Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека от 1 августа 2006 № 225 «О санитарно-эпидемиологической экспертизе пестицидов и агрохимикатов (с изменениями на 22 июля 2016 года)». [Order of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare No. 225 “O sanitarno-jepidemiologicheskoi jekspertize pesticidov i agrohimikatov (s izmenenijami na 22 ijulja 2016 goda)” dated 2006 August 1. (In Russ.)]. Доступно по: http://docs.cntd.ru/document/901991865. Ссылка активна на 26.12.2018.
  20. Приказ Министерства сельского хозяйства РФ от 10 июля 2007 № 357 «Об утверждении Порядка государственной регистрации пестицидов и агрохимикатов». [Order of the Ministry of Agriculture of the Russian Federation No. 357 “Ob utverzhdenii Porjadka gosudarstvennoi registracii pesticidov i agrohimikatov” dated 2007 July 10. (In Russ.)]. Доступно по: http://old.mcx.ru/documents/document/v7_show/22584.133.htm. Ссылка активна на 26.12.2018.
  21. Список пестицидов и агрохимикатов, разрешенных к применению на территории Российской Федерации. Приложение к журналу «Защита и карантин растений». – 2004. – 573 с. [Spisok pestitsidov i agrokhimikatov, razreshennykh k primeneniyu na territorii Rossiiskoi Federatsii. Prilozhenie k zhurnalu “Zashchita i karantin rastenii”. 2004. 573 р. (In Russ.)]
  22. Manual on development and use of FAO and WHO specifications for pesticides [Internet]. 1st ed., 3rd revision. Geneva: WHO Press; 2016 [cited 2018 Dec 20]. Available from: http://apps.who.int/iris/bitstream/handle/10665/246192/WHO-HTM-NTD-WHOPES-2016.4-eng.pdf?sequence=1.
  23. Guidance document on the assessment of the equivalence of technical materials of substances regulated under Regulation (EC) No 1107/2009 [Internet]. SANCO/10597/2003 [revised 2012 Jan 10; cited 2018 Sep 14]. Available from: https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_guidance_equivalence-chem-substances_en.pdf.
  24. Determination of equivalence for public health pesticides and pesticide products [Internet]. Report of a WHO Consultation. Geneva, Switzerland: WHO; 2016 [cited 2018 Sep 14]. Available from: http://apps.who.int/iris/bitstream/10665/254751/1/WHO-HTM-NTD-WHOPES-2017.1-eng.pdf.
  25. Overview of China’s New Pesticide Regulations; 2019. [cited 2019 June 28]. Available from: https://agrochemical.chemlinked.com/agropedia/overview-chinas-new-pesticide-regulations.
  26. Абилев С.К. Выявление и прогнозирование мутагенной активности химических соединений окружающей среды: Автореф. дис. … д-ра. биол. наук. – М., 2003. – 48 с. [Abilev SK. Vyjavlenie i prognozirovanie mutagennoi aktivnosti himicheskih soedinenii okruzhajushhei sredy. [dissertation] Moscow; 2003. 48 p. (In Russ.)]. Доступно по: http://earthpapers.net/vyyavlenie-i-prognozirovanie-mutagennoy-aktivnosti-himicheskih-soedineniy- okruzhayuschey-sredy-1. Ссылка активна на 14.09.2018.
  27. Kirkland D, Reeve L, Gatehouse D, Vanparys P. A core in vitro genotoxicity battery comprising the Ames test plus the in vitro micronucleus test is sufficient to detect rodent carcinogens and in vivo genotoxins. Mutat Res. 2011;721(1):27-73. https://doi.org/10.1016/j.mrgentox.2010.12.015.
  28. FAO specifications and evaluations for agricultural pesticides. Azoxystrobin [Internet]. Methyl (E)-2-{2-[6-(2-cyanophenoxy)pyrimidin-4-yloxy]phenyl}-3-methoxyacrylate [cited 2018 Dec 26]. Available from: http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/Specs/Azoxystrobin09.pdf.
  29. Li AP, Long TJ. An evaluation of the genotoxic potential of glyphosate. Fundam Appl Toxicol. 1988;10(3):537-546. https://doi.org/10.1093/toxsci/10.3.537.
  30. Koller VJ, Fürhacker M, Nersesyan A, et al. Cytotoxic and DNA-damaging properties of glyphosate and roundup in human-derived buccal epithelial cells. Arch Toxicol. 2012;86(5):805-813. https://doi.org/10.1007/s00204-012-0804-8.
  31. Mañas F, Peralta L, Raviolo J, et al. Genotoxicity of glyphosate assessed by the comet assay and cytogenetic tests. Environ Toxicol Pharmacol. 2009;28(1):37-41. https://doi.org/10.1016/j.etap.2009.02.001.
  32. Bolognesi C, Carrasquilla G, Volpi S, et al. Biomonitoring of genotoxic risk in agricultural workers from five colombian regions: association to occupational exposure to glyphosate. J Toxicol Environ Health A. 2009;72(15-16):986-997. https://doi.org/10.1080/15287390902929741.
  33. Health Effects Division EPA USA. Pendimethalin registration eligibility decision document [Internet]. Review. EPA USA; 1997. 53 p. [cited 2018 Dec 26]. Available from: https://archive.epa.gov/.
  34. Rue JC, Kim KR. Evaluation of genetic toxicity of synthetic chemicals (VII) – a synthetic selective herbicide pendimethalin. J Environ Toxicol. 2013;18(2):121-129.
  35. Peer review of the pesticide risk assessment of the active substance acetamiprid [Internet]. EFSA Journal. 2016; 14(11):4610 [cited 2018 Dec 26]. Available from: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2016.4610.
  36. Kocaman AY, Topaktaş M. In vitro evaluation of the genotoxicity of acetamiprid in human peripheral blood lymphocytes. Environ Mol Mutagen. 2007;48(6):483-490. https://doi.org/10.1002/em.20309.
  37. FAO specifications and evaluations for agricultural pesticides. Dimethoate [Internet]. O, O-dimethyl S-methylcarbamoylmethyl phosphorodithioate [cited 2018 Dec 26]. Available from: http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/Specs/Dimethoate2012_2.pdf.
  38. Georgieva V, Vachkova R, Tzoneva M, et al. Genotoxic activity of benomyl in different test systems. Environ Mol Mutagen. 1990;16(1):32-36. https://doi.org/10.1002/em.2850160106.
  39. Методические указания. Оценка мутагенной активности пестицидов (МУ-1.2.3364-16). – М.: Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека, 2016. – 49 с. [Metodicheskie ukazaniya. Otsenka mutagennoi aktivnosti pestitsidov (MU-1.2.3364-16). Moscow: Federal’naya sluzhba po nadzoru v sfere zashchity prav potrebitelei i blagopoluchiya cheloveka; 2016. 49 p. (In Russ.)]. Доступно по: http://docs.cntd.ru/document/456042956. Ссылка активна на 12.10.2018.
  40. OECD Guidelines for the Testing of Chemicals, Section 4. Test No. 471: Bacterial Reverse Mutation Test [Internet]. Paris: OECD Publishing; 1997 [cited 2018 Sep 14]. Available from: https://www.oecd-ilibrary.org/environment/test-no-471-bacterial-reverse-mutation-test_9789264071247-en; jsessionid=pFx-akD9zWipV5aajRV3vUz6.ip-10-240-5-179. https://doi.org/10.1787/20745788.
  41. OECD Guidelines for the Testing of Chemicals, Section 4. Test No. 474: Mammalian Erythrocyte Micronucleus Test [Internet]. Paris: OECD Publishing; 2016 [cited 2018 Sep 14]. Available from: https://read.oecd-ilibrary.org/environment/test-no-474-mammalian-erythrocyte-micronucleus-test_9789264264762-en#page1. https://doi.org/10.1787/9789264264762-en.
  42. Rakitskii V, Ilyushina N, Egorova O. Applicability of in vitro bacterial model for the equivalence assessment of pesticide technical materials. In: 20th International congress on in vitro toxicology. Berlin, 2018 October 15-18.
  43. Илюшина Н.А., Аверьянова Н.С., Масальцев Г.В., Ревазова Ю.А. Сравнительное исследование генотоксической активности технических продуктов глифосата в микроядерном тесте in vivo // Токсикологический вестник. – 2018. – № 4. – С. 24–28. [Ilyushina NA, Averianova NS, Masaltsev GV, Revazova YuA Comparative investigation of genotoxic activity of glyphosate technical products in the micronucleus test in vivo. Toxicological Review. 2018;(4):24-28. (In Russ.)]
  44. Илюшина Н.А., Егорова О.В., Масальцев Г.В., Аверьянова Н.С. Изучение генотоксичности технических продуктов пестицида — производного бензоилциклогексан-1,3-диона // Гигиена и санитария. – 2018. – Т. 97. – № 6. – С. 509–513. [Ilyushina NA, Egorova OV, Masaltsev GV, Averianova NS. Studies of the genotoxicity of technical products of benzoylcyclohexane-1,3-dione derivative pesticide. Hygiene & Sanitation. 2018;97(6):509-513. (In Russ.)]. https://doi.org/ 10.18821/0016-9900-2018-97-6-509-513.
  45. Review report for the active substance mesotrione [Internet]. European Commission Health and Consumer Protection Directorate-General. SANCO/ 1416/2001, 2003 [cited 2018 Sep 14]. Available from: http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/public/?event=activesubstance.ViewReview&id=350.
  46. FAO Specifications and Evaluations for Agricultural Pesticides. Glyphosate [Internet]. N-(phosphonomethyl)glycine [cited 2018 Sep 14]. Available from: http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/Specs/Glypho_2014.pdf.
  47. Илюшина Н.А., Масальцев Г.В., Аверьянова Н.С. Оценка повреждений ДНК в клетках млекопитающих in vivo при действии глифосата // Научно-медицинский вестник Центрального Черноземья. – 2018. – № 73. – С. 31–36. [Ilyushina NA, Masaltsev GV, Averianova NS. Аssessment of DNA damages in mammalian cells in vivo induced by glyphosate. Nauchno-meditsinskii vestnik Tsentral’nogo Chernozem’ya. 2018;(73):31-36. (In Russ.)]
  48. Casida JE. Pest toxicology: the primary mechanisms of pesticide action. Chem Res Toxicol. 2009;22(4): 609-619. https://doi.org/10.1021/tx8004949.
  49. Куценко С.А. Основы токсикологии [электронная библиотека]. – СПб.: Военно-медицинская академия им. С.М. Кирова, 2002. – 395 c. [Kucenko SA. Osnovy toksikologii [Internet]. Saint Petersburg: Voenno-meditsinskaya akademiya im. S.M. Kirova; 2003. 395 p. (In Russ.)]. Доступно по: http://biochem.vsmu.edu.ua/biochem_common_u/toxycology.pdf. Ссылка активна на 29.12.2018.
  50. Menn JJ. Comparative aspects of pesticide metabolism in plants and animals. Environ Health Perspect. 1978;27:113-24. https://doi.org/10.2307/3428870.
  51. Van Eerd LL, Hoagland RE, Zablotowicz RM, Hall C. Pesticide metabolism in plants and microorganisms. Weed Science. 2003;51(4):472-495. https://doi.org/10.1614/0043-1745(2003)051[0472: PMIPAM]2.0.CO;2.
  52. Thompson CJ. Secondary metabolism in microorganisms, plants and animals. Biochimie. 1992;74(6):592-593. https://doi.org/10.1016/0300-9084(92)90169-f.
  53. Menn JJ, Still GG, Ruhr RJ. Metabolism of insecticides and herbicides in higher plants. CRC Crit Rev Toxicol. 1977;5(1):1-21. https://doi.org/10.3109/10408447709101340.
  54. Toshiyuki KT, Ose K. Bioconcentration and metabolism of pesticides and industrial chemicals in the frog. Journal of Pesticide Science. 2014;39(2):55-68. https://doi.org/10.1584/jpestics.d13-047.
  55. Casida JE. Pesticide Detox by Design J Agric Food Chem. 2018;66(36):9379-9383. https://doi.org/10.1021/acs.jafc.8b02449.
  56. Hoagland RE, Zablotowicz RM, Hall JC. Pesticide metabolism in plants and microorganisms: an overview. In: Pesticide biotransformation in plants and microorganisms. ACS Symposium Series. Washington, DC: American Chemical Society. 2000;777 (Chapter 1):2-27. https://doi.org/10.1021/bk-2001-0777.ch001.
  57. Menn JJ, Stil GG, Ruhr RJ. Metabolism of insecticides and herbicides in higher plants. CRC Crit Rev Toxicol. 1977;5(1):1-21. https://doi.org/10.3109/10408447709101340.
  58. Xu C, Li CY, Kong AN. Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch Pharm Res. 2005;28(3):249-268. https://doi.org/10.1007/bf02977789.
  59. Рембовский В.Р., Mогиленкова Л.А. Естественные процессы детоксикации химических веществ, загрязнителей среды обитания человека // Medline.ru. Российский биомедицинский журнал. – 2015. – Т. 16. – № 1. – С. 216–239. [Rembovsky VR, Mogilenkova LA. The natural processes of detoxification of chemicals, pollutants of human habitat. Medline.ru. Rossijskii biomeditsinskii zhurnal. 2015;16(1):216-239. (In Russ.)]
  60. Zablotowicz RM, Hoagland RE, Hall JC. Metabolism of pesticides by plants and prokaryotes. In: Environmental fate and safety management of agrochemical herbicides. ACS Symposium Series. Ed. by J.M. Clark, H. Ohkawa. Washington, DC: American Chemical Society. 2005;899(Chapter 15):168-184. https://doi.org/10.1021/bk-2005-0899.ch015.
  61. Zablotowicz RM, Hoagland RE, Lee H, et al. Transformation of nitroaromatic pesticides and related xenobiotics by microorganisms and plants. In: Pesticide biotransformation in plants and microorganisms, similarities and divergences ACS Symposium Series. Ed. by C. Hall, R.E. Hoagland, R.M. Zablotowicz. Washington, DC: American Chemical Society. 2000;777(Chapter 11):194-216. https://doi.org/10.1021/bk-2001-0777.ch011.
  62. Kafarski P, Lejczak B, Forlani G. Biodegradation of pesticides containing carbon-to-phosphorous bond. In: Pesticide biotransformation in plants and microorganisms: similarities and divergences. ACS Symposium Series. Ed. by C. Hall, R.E. Hoagland, R.M. Zablotowicz. Washington, DC: American Chemical Society. 2000;777(Chapter 8):145-163. https://doi.org/10.1021/bk-2001-0777.ch008.
  63. Hameed A, Ahmad S, Ahmad RT, Karar H. Pesticide detoxification in invertebrates, plants and microbes. Life Sciences International Journal. 2011;5(2):2186-2194. [cited 2011·May 1]. Available from: https://www.researchgate.net/publication/283148292_PESTICIDE_DETOXIFICATION_IN_INVERTEBRATES_PLANTS_AND_MICROBES_Introduction.
  64. Wing KD, Sacher M, Kagaya Y, Tsurubuchi Y. Bioactivation and mode of action of oxadiazine indoxacarb in insects. Crop Prot. 2000;19(8-10):537-545. https://doi.org/10.1016/s0261-2194(00)00070-3.
  65. Lokeshwari D, Kumar NK, Manjunatha H, Shivashankar S. Biochemical characterization of detoxifying enzymes in dimethoate-resistant strains of melon aphid, Aphis gossypii (Hemiptera: Aphididae). Advances in Entomology. 2016;04(03):167-182. https://doi.org/10.4236/ae.2016.43018.
  66. Hoagland RE, Zablotowicz RM. The role of plant and microbial hydrolytic enzymes in pesticide metabolism. In: Pesticide biotransformation in plants and microorganisms. ACS Symposium Series. Washington, DC: American Chemical Society. 2000; 777(Chapter 4): 58-88. https://doi.org/10.1021/bk-2001-0777.ch004.
  67. Hall JC, Wickenden JS, Yau KY. Biochemical conjugation of pesticides in plants and microorganisms: an overview of similarities and divergences. In: Pesticide biotransformation in plants and microorganisms. ACS Symposium Series. Washington, DC: American Chemical Society. 2000;777 (Chapter 5):89-118. https://doi.org/10.1021/bk-2001-0777.ch005.
  68. Penning H, Sørensen SR, Meyer AH, et al. C, N, and H isotope fractionation of the herbicide isoproturon reflects different microbial transformation pathways. Environ Sci Technol. 2010;44(7):2372-2378. https://doi.org/10.1021/es9031858.
  69. Metabolism and biotransformation of pesticides [Internet]. [cited 2018 Dec 29]. Available from: www.life.illinois.edu/bfrancis/ib486/H3-Metabolism.doc.
  70. Tomizawa M, Casida JE. Unique neonicotinoid binding conformations conferring selective receptor interactions. J Agric Food Chem. 2011;59(7):2825-2828. https://doi.org/10.1021/jf1019455.
  71. Guidance Document on Revisions to OECD Genetic Toxicology Test Guidelines [Internet]. Genetic toxicology Guidance Document Aug 31, 2015 [cited 2018 Dec 20]. Available from: http://www.oecd.org/chemicalsafety/testing/Genetic%20Toxicology%20Guidance%20Document%20Aug%2031%202015.pdf.
  72. Ракитский В.Н., Ревазова Ю.А., Илюшина Н.А. Стратегия и тактика оценки мутагенности пестицидов // Токсикологический вестник. – 2015. – № 5. – С. 10–13. [Rakitskii VN, Revazova YA, Ilyushina NA. Strategy and tactics of the pesticide mutagenecity assessment. Toxicological Review. 2015;5:10-13. (In Russ.)]
  73. Turkez H, Arslan ME, Ozdemir O. Genotoxicity testing: progress and prospects for the next decade. Expert Opin Drug Metab Toxicol. 2017;13(10):1089-1098. https://doi.org/10.1080/17425255.2017.1375097.
  74. Ilyushina N, Goumenou M, Stivaktakis PD, et al. Maximum tolerated doses and erythropoiesis effects in the mouse bone marrow by 79 pesticides’ technical materials assessed with the micronucleus assay. Toxicol Rep. 2018;6:105-110. https://doi.org/10.1016/j.toxrep.2018.12.006.
  75. Committee on Mutagenicity of Chemicals in Food, Consumer Products, and the Environment. Interim guidance on a strategy for genotoxicity testing and mutagenic hazard assessment of impurities in chemical substances [Internet]. COM/12/S2. 2012. 10 p. [cited 2018 Sep 14]. Available from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/315779/impurities.pdf.
  76. OECD Guidelines for the Testing of Chemicals, Section 4. Test No. 489: In Vivo Mammalian Alkaline Comet Assay [Internet]. Paris: OECD Publishing; 2016 [cited 2018 Sep 14]. Available from: https://www.oecd.org/env/test-no-489-in-vivo-mammalian-alkaline-comet-assay-9789264264885-en.htm.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The algorithm for the assessment of the equivalence of technical materials of analogous pesticides on the basis of “mutagenicity” criterion

Download (75KB)

Copyright (c) 2019 Ilyushina N.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies