The genetic diversity of microsymbionts from Thermopsis lanceolata growing in Mongolia

Cover Page

Cite item

Abstract

For the first time, bacteria were isolated and identified from the root nodules of a wild-growing medicinal legume plant Thermopsis lanceolata, originated from Mongolia. The taxonomic position of 14 isolates obtained was determined using of sequencing of the 16S rRNA (rrs) and atpD genes. It was shown a significant biodiversity of the isolates from T. lanceolata, which belonged to three genera of the order Rhizobiales: Phyllobacterium (family Phyllobacteriaceae), Rhizobium (family Rhizobiaceae) and Bosea (family Bradyrhizobiaceae). Six isolates belonged to the species Phyllobacterium zundukense and Phyllobacterium trifolii (100 и 99,9% rrs similarity with the type strains P. zundukense Tri-48T and P. trifolii PETP02T, respectivelly), three isolates were identified as Rhizobium anhuiense (99,8% rrs similarity with the type strain R. anhuiense CCBAU 23252T). Two slow-growing isolates of the genus Bosea Tla-534 and Tla-545 may potentially belong to new species, since their rrs-similarity to the closest type strains B. massiliensis LMG 26221T, B. lathyri LMG 26379T and B. vaviloviae Vaf18T was 98,5-99,0%. Non-rhizobial strains were not isolated. The isolation and future investigation of the rhizobial microsymbionts of the valuable medicinal legume Thermopsis lanceolata is one of the necessary prerequisites for its industrial cultivation.

About the authors

Denis S. Karlov

All-Russia Research Institute for Agricultural Microbiology

Author for correspondence.
Email: makondo07@gmail.com
SPIN-code: 8355-8091
ResearcherId: E-2552-2014

PhD, Junior Researcher, Russian Collection of Agricultural Microorganisms

Russian Federation, 3, Podbelsky highway, Pushkin, Saint-Petersburg, 196608

Anna L. Sazanova

All-Russia Research Institute for Agricultural Microbiology

Email: anna_sazanova@mail.ru

PhD, Senior Researcher, Russian Collection of Agricultural Microorganisms

Russian Federation, 3, Podbelsky highway, Pushkin, Saint-Petersburg, 196608

Irina G. Kuznetsova

All-Russia Research Institute for Agricultural Microbiology

Email: kuznetsova_rina@mail.ru

Engineer-Researcher, Russian Collection of Agricultural Microorganisms

Russian Federation, 3, Podbelsky highway, Pushkin, Saint-Petersburg, 196608

Vera I. Safronova

All-Russia Research Institute for Agricultural Microbiology

Email: v.safronova@rambler.ru

PhD, Head, Russian Collection of Agricultural Microorganisms

Russian Federation, 3, Podbelsky highway, Pushkin, Saint-Petersburg, 196608

Nina Y. Tikhomirova

All-Russia Research Institute for Agricultural Microbiology

Email: arriam2008@yandex.ru

Researcher, Russian Collection of Agricultural Microorganisms

Russian Federation, 3, Podbelsky highway, Pushkin, Saint-Petersburg, 196608

Zhanna P. Popova

All-Russia Research Institute for Agricultural Microbiology

Email: elestd@yandex.ru

PhD, Senior Researcher, Russian Collection of Agricultural Microorganisms

Russian Federation, 3, Podbelsky highway, Pushkin, Saint-Petersburg, 196608

Yuriy S. Osledkin

All-Russia Research Institute for Agricultural Microbiology

Email: arriam2008@yandex.ru

PhD, Leading Researcher, Russian Collection of Agricultural Microorganisms

Russian Federation, 3, Podbelsky highway, Pushkin, Saint-Petersburg, 196608

Alla V. Verkhozina

Siberian Institute of Plant Physiology and Biochemistry (SIPPB)

Email: allaverh@list.ru

PhD, Head of The Herbarium Group, Department of Terrestrial Ecosystems Resistance

Russian Federation, 132, Lermontova street, Irkutsk, 664033

Andrey A. Belimov

All-Russia Research Institute for Agricultural Microbiology

Email: belimov@rambler.ru

DrSci, Head of Laboratory of Rhizosphere Microflora

Russian Federation, 3, Podbelsky highway, Pushkin, Saint-Petersburg, 196608

References

  1. Проворов Н.А., Воробьев Н.И. Генетические основы эволюции растительно-микробного симбиоза. – СПб.: Информ-Навигатор, 2012. [Provorov NA, Vorob’ev NI. Geneticheskie osnovy evolyutsii rastitel’no-mikrobnogo simbioza. Saint Petersburg: Inform-Navigator; 2012. (In Russ.)]
  2. Мальцев А.И. Атлас важнейших видов сорных растений СССР. – М.; Ленинград: ОГИЗ Сельхозгиз, 1939. [Mal’tsev AI. Atlas vazhneyshikh vidov sornykh rasteniy SSSR. Moscow, Leningrad: OGIZ Sel’khozgiz; 1939. (In Russ.)]
  3. Shakirov TT, Sabirov KA. The production of cyisine from the seeds of Thermopsis lanceolata. Chem Nat Compd. 1970;6(6):733-734. https://doi.org/10.1007/BF00565346.
  4. Tutka P, Zatonski W. Cytisine for the treatment of nicotine addiction: from a molecule to therapeutic efficacy. Pharmacol Rep. 2006;58(6):777-798.
  5. Рабинович М.И. Лекарственные растения в ветеринарной практике. – М.: Агропромиздат, 1987. [Rabinovich MI. Lekarstvennye rasteniya v veterinarnoy praktike. Moscow: Agropromizdat; 1987. (In Russ.)]
  6. Novikova N, Safronova V. Transconjugants of Agrobacterium radiobacter harbouring sym genes of Rhizobium galegae can form an effective symbiosis with Medicago sativa. FEMS Microbiol Lett. 1992;72(3):261-268. https://doi.org/10.1111/j.1574-6968.1992.tb05107.x.
  7. Safronova VI, Kuznetsova IG, Sazanova AL, et al. Bosea vaviloviae sp. nov., a new species of slow-growing rhizobia isolated from nodules of the relict species Vavilovia formosa (Stev.) Fed. Antonie Van Leeuwenhoek. 2015;107(4):911-920. https://doi.org/10.1007/s10482-015-0383-9.
  8. Gaunt MW, Turner SL, Rigottier-Gois L, et al. Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol. 2001;51(Pt 6):2037-2048. https://doi.org/10.1099/00207713-51-6-2037.
  9. Martens M, Dawyndt P, Coopman R, et al. Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int J Syst Evol Microbiol. 2008;58(Pt 1):200-214. https://doi.org/10.1099/ijs.0.65392-0.
  10. Stepkowski T, Zak M, Moulin L, et al. Bradyrhizobium canariense and Bradyrhizobium japonicum are the two dominant rhizobium species in root nodules of lupin and serradella plants growing in Europe. Syst Appl Microbiol. 2011;34(5):368-375. https://doi.org/10.1016/j.syapm.2011.03.002.
  11. Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731-9. https://doi.org/10.1093/molbev/msr121.
  12. Safronova V, Tikhonovich I. Automated cryobank of microorganisms: Unique possibilities for long-term authorized depositing of commercial microbial strains. In: Microbes in applied research: current advances and challenges. Ed. by A. Mendez-Vilas. Hackensack: World Scientific Publishing Co; 2012. P. 331-334. https://doi.org/10.1142/9789814405041_0066.
  13. Убугунова В.И. Экологические условия формирования почв речных пойм Монголии и их свойства: Автореф. дис. … д-ра биол. наук. – Иркутск, 1999. [Ubugunova VI. Ekologicheskie usloviya formirovaniya pochv rechnykh poym Mongolii i ikh svoystva. [dissertation] Irkutsk; 1999. (In Russ.)]
  14. Белозерцева И.А., Сороковой А.А., Доржготов Д., и др. Почвы бассейна озера Байкал и их картографирование на территории России и Монголии // Международный журнал прикладных и фундаментальных исследований. – 2014. – № 5–2. – С. 114–120. [Belozertseva IA, Sorokovoy AA, Dorzhgotov D, et al. Ground of pool of lake baikal and their mapping in territory of Russia and Mongolia. Mezhdunarodnyy zhurnal prikladnykh i fundamental’nykh issledovaniy. 2014;(5-2):114-120. (In Russ.)]
  15. Шишов Л.Л., Тонконогов В.Д., Лебедева И.И., Герасимова М.И. Классификация и диагностика почв России. – Смоленск: Ойкумена, 2004. [Shishov LL, Tonkonogov VD, Lebedeva II, Gerasimova MI. Klassifikatsiya i diagnostika pochv Rossii. Smolensk: Oykumena; 2004. (In Russ.)]
  16. V alverde A, Velazquez E, Fernandez-Santos F, et al. Phyllobacterium trifolii sp. nov., nodulating Trifolium and Lupinus in Spanish soils. Int J Syst Evol Microbiol. 2005;55(Pt 5):1985-1989. https://doi.org/10.1099/ijs.0.63551-0.
  17. Zamlynska K, Komaniecka I, Zebracki K, et al. Stu dies on lipid A isolated from Phyllobacterium trifolii PETP02(T) lipopolysaccharide. Antonie Van Leeuwenhoek. 2017;110(11):1413-1433. https://doi.org/10.1007/s10482-017-0872-0.
  18. Baimiev AK, Baimiev AK, Gubaidullin II, et al. Bacteria closely related to Phyllobacterium trifolii according to their 16S rRNA gene are discovered in the nodules of Hungarian sainfoin. Russ J Genet. 2007;43(5):587-90. https://doi.org/10.1134/S1022795407050146.
  19. Safronova VI, Sazanova AL, Kuznetsova IG, et al. Phyllobacterium zundukense sp. nov., a novel species of rhizobia isolated from root nodules of the legume species Oxytropis triphylla (Pall.) Pers. Int J Syst Evol Microbiol. 2018;68(5):1644-1651. https://doi.org/10.1099/ijsem.0.002722.
  20. Mantelin S, Saux MF, Zakhia F, et al. Emended description of the genus Phyllobacterium and description of four novel species associated with plant roots: Phyllobacterium bourgognense sp. nov., Phyllobacterium ifriqiyense sp. nov., Phyllobacterium leguminum sp. nov. and Phyllobacterium brassicacearum sp. nov. Int J Syst Evol Microbiol. 2006;56(Pt 4):827-839. https://doi.org/10.1099/ijs.0.63911-0.
  21. Flores-Felix JD, Carro L, Velazquez E, et al. Phyllobacterium endophyticum sp. nov., isolated from nodules of Phaseolus vulgaris. Int J Syst Evol Microbiol. 2013;63(Pt 3): 821-6. https://doi.org/10.1099/ijs.0.038497-0.
  22. Sanchez M, Ramirez-Bahena MH, Peix A, et al. Phyllobacterium loti sp. nov. isolated from nodules of Lotus corniculatus. Int J Syst Evol Microbiol. 2014;64(Pt 3): 781-6. https://doi.org/10.1099/ijs.0.052993-0.
  23. Jiao YS, Yan H, Ji ZJ, et al. Phyllobacterium sophorae sp. nov., a symbiotic bacterium isolated from root nodules of Sophora flavescens. Int J Syst Evol Microbiol. 2015;65(Pt 2):399-406. https://doi.org/10.1099/ijs.0.067017-0.
  24. Zhao L, Deng Z, Yang W, et al. Diverse rhizobia associated with Sophora alopecuroides grown in different regions of Loess Plateau in China. Syst Appl Microbiol. 2010;33(8):468-477. https://doi.org/10.1016/j.syapm.2010.08.004.
  25. Zhang YJ, Zheng WT, Everall I, et al. Rhizobium anhuiense sp. nov., isolated from effective nodules of Vicia faba and Pisum sativum. Int J Syst Evol Microbiol. 2015;65(9):2960-7. https://doi.org/10.1099/ijs.0.000365.
  26. Li Y, Wang ET, Liu Y, et al. Rhizobium anhuiense as the predominant microsymbionts of Lathyrus maritimus along the Shandong Peninsula seashore line. Syst Appl Microbiol. 2016;39(6):384-390. https://doi.org/10.1016/j.syapm.2016.07.001.
  27. Gurusamy C, Bal A, McKenzie D. Nodulation of beach pea (Lathyrus maritimus [L.] Bigel.) induced by different strains of rhizobia. Can J Plant Sci. 1999;79(2):239-42. https://doi.org/10.4141/P98-039.
  28. Alves LM, de Souza JAM, Varani AM, Lemos EGM. The family Rhizobiaceae. In: The Prokaryotes. Ed. by E. Rosenberg, E.F. DeLong, S. Lory, et al. Berlin, Heidelberg: Springer; 2014.P. 419-437. https://doi.org/10.1007/978-3-642-30197-1_297.
  29. De Meyer SE, Willems A. Multilocus sequence analysis of Bosea species and description of Bosea lupini sp. nov., Bosea lathyri sp. nov. and Bosea robiniae sp. nov., isolated from legumes. Int J Syst Evol Microbiol. 2012;62(Pt 10):2505-10. https://doi.org/10.1099/ijs.0.035477-0.
  30. Сазанова А.Л., Кузнецова И.Г., Сафронова В.И., и др. Изучение генетического разнообразия микросимбионтов копеечника щетинистого Hedysarum gmelinii subsp. setigerum, произрастающего в Прибайкалье // Сельскохозяйственная биология. – 2017. – Т. 52. – № 5. – C. 1004–1011. [Sazanova AL, Kuznetsova IG, Safronova VI, et al. Study of the genetic diversity of microsymbionts isolated from Hedysarum gmelinii subsp. setigerum, growing in the Baikal lake region. Selskokhoziaistvennaia Biol. 2017;52(5):1004-1011. (In Russ.)]. https://doi.org/10.15389/agrobiology.2017.5.1004rus.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Phylogenetic tree generated by the neighbour-joining method using partial 16S rRNA gene sequences of the isolated strains from Thermopsis lanceolata nodules and representatives of closely related to Phyllobacterium and Rhizobium species. The isolated strains in bold. Type species are indicated by the letter T. I–III clusters that formed by Phyllobacterium isolates obtained in the work. Bootstrap values more than 50% are given

Download (205KB)
3. Fig. 2. Phylogenetic tree generated by the neighbour-joining method using atpD gene sequences of the isolated strains from Thermopsis lanceolata nodules and representatives of closely related to Phyllobacterium and Rhizobium species. The isolated strains in bold. Type species are indicated by the letter T. Iа, Ib, II и III – clusters that formed by Phyllobacterium isolates obtained in the work. Bootstrap values more than 50% are given

Download (163KB)
4. Fig. 3. Phylogenetic tree generated by the neighbour-joining method using partial 16S rRNA gene sequences of the isolated strains from Thermopsis lanceolata nodules and representatives of closely related to Bosea species. The isolated strains in bold. Type species are indicated by the letter T. Bootstrap values more than 50% are given

Download (164KB)
5. Fig. 4. Phylogenetic tree generated by the neighbour-joining method using atpD gene sequences of the isolated strains from Thermopsis lanceolata nodules and representatives of closely related to Bosea species. The isolated strains in bold. Type species are indicated by the letter T. Bootstrap values more than 30% are given

Download (228KB)

Copyright (c) 2019 Karlov D.S., Sazanova A.L., Kuznetsova I.G., Safronova V.I., Tikhomirova N.Y., Popova Z.P., Osledkin Y.S., Verkhozina A.V., Belimov A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies