Specificity of the symbiotic interaction of bacteria of the genus Rhizobium leguminosarum bv. viciae with plants of the tribe Vicieae

Cover Page

Cite item

Full Text

Abstract

The estimation of nodulation competitiveness of industrial strains against the native nodule bacteria and also the analyses of distribution of strain’s genotypes which formed nodules on roots of 4 plant species was the purpose of this work. The objects of the research were rhizobium strains which formed nodules on roots of plant (the nodule-forming units – NFU), obtained in field experiment with application of preseeding processing of seeds of pea (Pisum satіvum L.), fava beans (Vicia faba L.), lathyrus (Lathyrus sativus L.) and lentil (Lens culinaris L.). The mixture of the collection strains allocated from nodules of peas and beans, and having various combinations of chromosomal and symbiotic genotypes was used for inoculation of seeds. Identification of NFU was carried out with the use of the analysis of the emitted nodule total DNA on several chromosomal markers: the rpoB gene and the hin-region, and the plasmid marker – nodD gene. It is established that only about 50% of nodules were formed by the strains used at inoculation of seeds. Besides, the combinations of chromosomal and symbiotic genotypes specific for a rhizobium – symbionts of concrete host plants have been established: IA genotype with sym-2 for P. sativum; IB genotype with sym-4 for V. faba. The results of this study create prerequisites for selection of couples: macro- and microsymbiont for the purpose of increasing efficiency of plant-microbial systems, in which the nature of symbiotic interaction defines efficiency of partners.

About the authors

Sofya A. Khapchaeva

A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences

Author for correspondence.
Email: sakhapchaeva.1990@gmail.com
ORCID iD: 0000-0002-6900-8399
SPIN-code: 2456-8389
ResearcherId: H-9438-2014

Junior Researcher of Algal Biotechnology Group

Russian Federation, 33, bld. 2 Leninsky Ave., Moscow 119071

Svetlana V. Didovich

Research Institute of Agriculture of Crimea

Email: sv-alex.68@mail.ru
SPIN-code: 4162-1908

Ph. D, Agriculture, Senior Research Scientist, Agricultural Microbiology Department

Russian Federation, 150 Kievskaya str., Simferopol, 295493

Alexey F. Topunov

A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences

Email: aftopunov@yandex.ru
SPIN-code: 8379-6221

Dr. Sci. (Biology), Сhief Research Scientist, Head of the Laboratory of Biochemistry of Nitrogen Fixation and Nitrogen Metabolism

Russian Federation, 33, bld. 2 Leninsky Ave., Moscow

Andrey L. Mulyukin

S.N. Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences

Email: andlm@mail.ru
SPIN-code: 1269-5440

Dr. Sci. (Biology), Leading Researcher, Head of the UNIQEM Collection Core Facility

Russian Federation, 33, bld. 2 Leninsky Ave., Moscow 119071

Vasiliy S. Zotov

A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences

Email: adni83@yandex.ru

Ph. D, Biology, Senior Research Scientist, Head of the Group of Algae Biotechnology

Russian Federation, 33, bld. 2 Leninsky Ave., Moscow 119071

References

  1. Lira MA, Jr., Nascimento LR, Fracetto GG. Legume-rhizobia signal exchange: promiscuity and environmental effects. Front Microbiol. 2015;6:945. doi: 10.3389/fmicb.2015.00945.
  2. Oldroyd GE, Murray JD, Poole PS, Downie JA. The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet. 2011;45:119-144. doi: 10.1146/annurev-genet-110410-132549.
  3. Проворов Н.А. Взаимосвязь между таксономией бобовых и специфичностью их взаимодействия с клубеньковыми бактериями // Ботанический журнал. – 1992. – Т. 77. – № 8. – С. 21–32. [Provorov NA. Vzaimosvyaz’ mezhdu taksonomiey bobovykh i spetsifichnost’yu ikh vzaimodeistviya s kluben’kovymi bakteriyami. Botanicheskii zhurnal. 1992;77(8):21-32. (In Russ.)]
  4. Mutch LA, Young JP. Diversity and specificity of Rhizobium leguminosarum biovar viciae on wild and cultivated legumes. Mol Ecol. 2004;13(8):2435-2444. doi: 10.1111/j.1365-294X.2004.02259.x.
  5. Laguerre G, Louvrier P, Allard MR, Amarger N. Compatibility of rhizobial genotypes within natural populations of Rhizobium leguminosarum biovar viciae for nodulation of host legumes. Appl Environ Microbiol. 2003;69(4):2276-2283. doi: 10.1128/AEM.69.4.2276-2283.2003.
  6. Alvarez-Martinez ER, Valverde A, Ramirez-Bahena MH, et al. The analysis of core and symbiotic genes of rhizobia nodulating Vicia from different continents reveals their common phylogenetic origin and suggests the distribution of Rhizobium leguminosarum strains together with Vicia seeds. Arch Microbiol. 2009;191(8):659-668. doi: 10.1007/s00203-009-0495-6.
  7. Mauchline TH, Hayat R, Roberts R, et al. Assessment of core and accessory genetic variation in Rhizobium leguminosarum symbiovar trifolii strains from diverse locations and host plants using PCR-based methods. Lett Appl Microbiol. 2014;59(2):238-246. doi: 10.1111/lam.12270.
  8. Онищук О.П., Воробьёв Н.И., Провозов Н.А. Нодуляционная конкурентоспособность клубеньковых бактерий: генетический контроль и адаптивное значение (обзор) // Прикладная биохимия и микробио логия. – 2017. – Т. 53. – № 2. – С. 127–135. [Onishchuk OP, Vorobyov NI, Provorov NA. Nodulation Competitiveness of Nodular Bacteria: Genetic Control and Adaptive Significance. Applied biochemistry and microbiology. 2017;53(2):127-135. (In Russ.)] doi: 10.7868/S0555109917020131.
  9. Yang C, Bueckert R, Schoenau J, et al. Symbiosis of selected Rhizobium leguminosarum bv. viciae strains with diverse pea genotypes: effects on biological nitrogen fixation. Can J Microbiol. 2017;63(11):909-919. doi: 10.1139/cjm-2017-0281.
  10. Bourion V, Heulin-Gotty K, Aubert V, et al. Co-ino culation of a Pea Core-Collection with Diverse Rhizobial Strains Shows Competitiveness for Nodulation and Efficiency of Nitrogen Fixation Are Distinct traits in the Interaction. Front Plant Sci. 2017;8:2249. doi: 10.3389/fpls.2017.02249.
  11. Zou L, Chen YX, Penttinen P, et al. Genetic Diversity and Symbiotic Efficiency of Nodulating Rhizobia Isolated from Root Nodules of Faba Bean in One Field. PLoS One. 2016;11(12):e0167804. doi: 10.1371/journal.pone.0167804.
  12. Патент РФ на изобретение № 2486251/ 25.08.11. Зотов В.С., Пунина Н.В., Топунов А.Ф. Способ идентификации и дифференциации прокарио тических организмов. [Patent RUS No 2486251/ 25.08.11. Zotov VS, Punina NV, Topunov AF. Sposob identifikatsii i differentsiatsii prokarioticheskikh organizmov. (In Russ.)]
  13. Laguerre G, Mazurier SI, Amarger N. Plasmid profiles and restriction fragment length polymorphism of Rhizobium leguminosarum bv. viciae in field populations. FEMS Microbiol Lett. 1992;101(1):17-26. doi: 10.1111/j.1574-6968.1992.tb05757.x.
  14. Martens M, Dawyndt P, Coopman R, et al. Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int J Syst Evol Microbiol. 2008;58(Pt 1):200-214. doi: 10.1099/ijs.0.65392-0.
  15. Зотов В.С., Пунина Н.В., Хапчаева С.А., и др. Новый таксономический маркер клубеньковых бактерий рода Rhizobium и его эволюция // Экологическая генетика. – 2012. – Т. 10. – № 2. – С. 50–63. [Zotov VS, Punina NV, Khapchaeva SA, et al. A new taxonomic marker of nodule bacteria of the Rhizobium genus and its evolution. Ecological genetics. 2013;3(2):102-113. (In Russ.)]. doi: 10.17816/ecogen10250-63.
  16. Laguerre G, Mavingui P, Allard MR, et al. Typing of rhizobia by PCR DNA fingerprinting and PCR-restriction fragment length polymorphism analysis of chromosomal and symbiotic gene regions: application to Rhizobium leguminosarum and its different biovars. Appl Environ Microbiol. 1996;62(6):2029-2036.
  17. Sanger F, Air GM, Barrell BG, et al. Nucleotide sequence of bacteriophage phi X174 DNA. Nature. 1977;265(5596):687-695. doi: 10.1038/265687a0.
  18. Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol. 1990;215(3):403-410. doi: 10.1016/S0022-2836(05)80360-2.
  19. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser (Oxf). 1999;41(2):95-98.
  20. Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731-2739. doi: 10.1093/molbev/msr121.
  21. Nei M, Kumar S. Molecular evolution and phylogenetics. New York: Oxford University Press; 2000.
  22. Khapchaeva SA, Punina NV, Zotov VS, et al. Specific effectiveness of symbioses between Pisum satіvum and Vicia faba and different genotypes of rhizobia. In: Proceedings of the 42nd Annual meeting ESNA 2013; Thessaloniki, 4-8 Sep 2013. Thessaloniki; 2013. p. 31.
  23. Зотов В.С., Пунина Н.В., Хапчаева С.А., и др. Использование методов saAFLP и hin-регион ПЦР для генотипирования штаммов ризобий — симбионтов Phaseolus vulgaris // Таврический вестник аграрной науки. – 2013. – № 1. – С. 15–23. [Zotov VS, Punina NV, Khapchaeva SA, et al. Using of saaflp and hin-region pcr for genotyping analysis of nodulating rhizobial symbionts of Phaseolus Vulgaris. Tavricheskiy vestnik agrarnoy nauki. 2013;(1):15-23. (In Russ.)]
  24. Depret G, Laguerre G. Plant phenology and genetic variability in root and nodule development strongly influence genetic structuring of Rhizobium leguminosarum biovar viciae populations nodulating pea. New Phytol. 2008;179(1):224-235. doi: 10.1111/j.1469-8137.2008.02430.x.
  25. Jorrin B, Imperial J. Population Genomics Analysis of Legume Host Preference for Specific Rhizobial Genotypes in the Rhizobium leguminosarum bv. viciae Symbioses. Mol Plant Microbe Interact. 2015;28(3):310-8. doi: 10.1094/MPMI-09-14-0296-FI.
  26. Пунина Н.В., Макридакис Н.М., Хапчаева С.А., и др. Применение молекулярных методов при создании растительных микробных препаратов // Таврический вестник аграрной науки. – 2016. – Т. 1. – № 5. – С. 20–34. [Punina NV, Makridakis NM, Khapchaeva SA, et al. Application of molecular methods for microbial inoculants for plants. Tavricheskiy vestnik agrarnoy nauki. 2016;1(5):20-34. (In Russ.)]
  27. Gopalakrishnan S, Sathya A, Vijayabharathi R, et al. Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech. 2015;5(4):355-377. doi: 10.1007/s13205-014-0241-x.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The phylogenetic tree that was constructed on the basis of comparative sequence analysis of the fragment of rpoB gene of Rhizobium sp. – symbionts of cross-inoculation group plants using the NJ algorithm. Scale corresponds to 2 replacements by 100 couples of the bases. The numerals show the statistical reliability of the order of branching (%) defined by bootstrap analysis (1000 replicas). Bootstrap values less than 70% are not shown

Download (87KB)
3. Fig. 2. The RFLP analysis of a fragment of nodD gene with use of a MspI restriction endonuclease. 50+ bp DNA Ladder. Electrophoretic profile for 12 nodule-forming units of each species of a plant are presented: lentil, lathyrus, fava beans and pea. Sym-genotypes are designated by figures (1-4)

Download (1MB)
4. Fig. 3. Diagram of distribution of sym-genotypes in the nodule-forming units of cross-inoculation group plants: lentil, lathyrus, fava beans and pea

Download (49KB)
5. Fig. 4. Diagram of distribution of hin-genotypes in the nodule-forming units of cross-inoculation group plants: lentil, lathyrus, fava beans and pea

Download (51KB)
6. Fig. 5. Structure of the hin-region of Rhizobium leguminosarum bv. viciae

Download (33KB)

Copyright (c) 2018 Khapchaeva S.A., Didovich S.V., Topunov A.F., Mulyukin A.L., Zotov V.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
 


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies