Иммунный ответ на новую коронавирусную инфекцию

Обложка

Цитировать

Полный текст

Аннотация

Настоящий краткий обзор посвящен анализу литературы о гуморальном и Т-клеточном иммунитете к новой коронавирусной инфекции. Представлены современные данные о белках вируса, на которые вырабатываются антитела, о типах иммуноглобулинов и их роли в защите от инфекции, о длительности гуморального иммунного ответа. Кроме того, сделан краткий анализ статуса Т- клеточного иммунитета при COVID-19 и оценен его вклад в нейтрализацию вируса. Обобщенные данные, демонстрирующие сохранение как гуморального, так и Т-клеточного иммунитета после болезни в течение полугода и более, крайне востребованы профессиональным сообществом для обоснованного принятия решений о мониторинге популяционного иммунитета, выбора времени для (ре)вакцинации и отбора параметров выбора наиболее оптимальной вакцины. Тем не менее выявлен ряд вопросов, требующих дальнейшего изучения.

Об авторах

Вячеслав Сергеевич Федоров

Институт молекулярной биологии имени В.А. Энгельгардта Российской академии наук

Email: fedorovvyach@gmail.com

лаборант-исследователь

Россия, 119991, Москва, ул. Вавилова, д. 32

Ольга Николаевна Иванова

Институт молекулярной биологии имени В.А. Энгельгардта Российской академии наук

Email: olgaum@yandex.ru
ORCID iD: 0000-0002-3673-4714

к.б.н., н.с.

Россия, 119991, Москва, ул. Вавилова, д. 32

Инна Леонидовна Карпенко

Институт молекулярной биологии имени В.А. Энгельгардта Российской академии наук

Email: ilkzkil@gmail.com
ORCID iD: 0000-0001-9849-0447
SPIN-код: 1699-6450

к.х.н., с.н.с.

Россия, 119991, Москва, ул. Вавилова, д. 32

Александр Владимирович Иванов

Институт молекулярной биологии имени В.А. Энгельгардта Российской академии наук

Автор, ответственный за переписку.
Email: aivanov@yandex.ru
ORCID iD: 0000-0002-5659-9679
SPIN-код: 5776-5496

в.н.с.

Россия, 119991, Москва, ул. Вавилова, д. 32

Список литературы

  1. Abdelrahman Z, Li MWang X. Comparative Review of SARS-CoV-2, SARS-CoV, MERS-CoV, and influenza a respiratory viruses. Front Immunol. 2020;11:552909. doi: 10.3389/fimmu.2020.552909
  2. V’Kovski P, Kratzel A, Steiner S, et al. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2021;19(3):155–170. doi: 10.1038/s41579-020-00468-6
  3. Hu B, Guo H, Zhou P, et al. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2021;19(3):141–154. doi: 10.1038/s41579-020-00459-7
  4. Worldometers [Internet]. COVID-19 Coronavirus Pandemic Cited [31.03.2021). Available from: https://www.worldometers.info/coronavirus
  5. Pan H, Peto R, Henao-Restrepo AM, et al. Repurposed antiviral drugs for Covid-19 – interim WHO solidarity trial results. N Engl J Med. 2021;384(6):497–511. doi: 10.1056/NEJMoa2023184
  6. Spinner CD, Gottlieb RL, Criner GJ, et al. Effect of remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19: a randomized clinical trial. JAMA. 2020;324(11):1048–1057. doi: 10.1001/jama.2020.16349
  7. Beigel JH, Tomashek KM, Dodd LE, et al. Remdesivir for the treatment of Covid-19 - final report. N Engl J Med. 2020;383(19):1813–1826. doi: 10.1056/NEJMoa2007764
  8. Udwadia ZF, Singh P, Barkate H, et al. Efficacy and safety of favipiravir, an oral RNA-dependent RNA polymerase inhibitor, in mild-to-moderate COVID-19: a randomized, comparative, open-label, multicenter, phase 3 clinical trial. Int J Infect Dis. 2021;103:62–71. doi: 10.1016/j.ijid.2020.11.142
  9. Dabbous HM, Abd-Elsalam S, El-Sayed MH, et al. Efficacy of favipiravir in COVID-19 treatment: a multi-center randomized study. Arch Virol. 2021;166(3):949–954. doi: 10.1007/s00705-021-04956-9
  10. Nelson CW, Ardern Z, Goldberg TL, et al. Dynamically evolving novel overlapping gene as a factor in the SARS-CoV-2 pandemic. Elife. 2020;9:e59633. doi: 10.7554/eLife.59633
  11. Arya R, Kumari S, Pandey B, et al. Structural insights into SARS-CoV-2 proteins. J Mol Biol. 2021;433(2):166725. doi: 10.1016/j.jmb.2020.11.024
  12. Ogando NS, Dalebout TJ, Zevenhoven-Dobbe JC, et al. SARS-coronavirus-2 replication in Vero E6 cells: replication kinetics, rapid adaptation and cytopathology. J Gen Virol. 2020;101(9):925–940. doi: 10.1099/jgv.0.001453
  13. Qiu M, Shi Y, Guo Z, et al. Antibody responses to individual proteins of SARS coronavirus and their neutralization activities. Microbes Infect. 2005;7(5-6):882–889. doi: 10.1016/j.micinf.2005.02.006
  14. Wu LP, Wang NC, Chang YH, et al. Duration of antibody responses after severe acute respiratory syndrome. Emerg Infect Dis. 2007;13(10):1562–1564. doi: 10.3201/eid1310.070576
  15. Choe PG, Perera R, Park WB, et al. MERS-CoV antibody responses 1 year after symptom onset, South Korea, 2015. Emerg Infect Dis. 2017;23(7):1079–1084. doi: 10.3201/eid2307.170310
  16. Fan X, Zhou J, Bi X, et al. L-theanine suppresses the metastasis of prostate cancer by downregulating MMP9 and Snail. J Nutr Biochem. 2021;89:108556. doi: 10.1016/j.jnutbio.2020.108556
  17. Cao WC, Liu W, Zhang PH, et al. Disappearance of antibodies to SARS-associated coronavirus after recovery. N Engl J Med. 2007;357(11):1162–1163. doi: 10.1056/NEJMc070348
  18. Ravichandran S, Lee Y, Grubbs G, et al. Longitudinal antibody repertoire in “mild” versus “severe” COVID-19 patients reveals immune markers associated with disease severity and resolution. Sci Adv. 2021;7(10):eabf2467. doi: 10.1126/sciadv.abf2467
  19. Wang X, Lam JY, Wong WM, et al. Accurate diagnosis of COVID-19 by a novel immunogenic secreted SARS-CoV-2 orf8 protein. MBio. 2020;11(5):e02431-20. doi: 10.1128/mBio.02431-20
  20. Secchi M, Bazzigaluppi E, Brigatti C, et al. COVID-19 survival associates with the immunoglobulin response to the SARS-CoV-2 spike receptor binding domain. J Clin Invest. 2020;130(12):6366–6378. doi: 10.1172/JCI142804
  21. Sun J, Tang X, Bai R, et al. The kinetics of viral load and antibodies to SARS-CoV-2. Clin Microbiol Infect. 2020;26(12):1690 e1–1690 e4. doi: 10.1016/j.cmi.2020.08.043
  22. Maine GN, Lao KM, Krishnan SM, et al. Longitudinal characterization of the IgM and IgG humoral response in symptomatic COVID-19 patients using the Abbott Architect. J Clin Virol. 2020;133:104663 doi: 10.1016/j.jcv.2020.104663
  23. Guo L, Ren L, Yang S, et al. Profiling early humoral response to diagnose novel Coronavirus Disease (COVID-19). Clin Infect Dis. 2020;71(15):778–785. doi: 10.1093/cid/ciaa310
  24. Munitz A, Edry-Botzer L, Itan M, et al. Rapid seroconversion and persistent functional IgG antibodies in severe COVID-19 patients correlates with an IL-12p70 and IL-33 signature. Sci Rep. 2021;11(1):3461. doi: 10.1038/s41598-021-83019-0
  25. Li K, Huang B, Wu M, et al. Dynamic changes in anti-SARS-CoV-2 antibodies during SARS-CoV-2 infection and recovery from COVID-19. Nat Commun. 2020;11(1):6044. doi: 10.1038/s41467-020-19943-y
  26. Semmler G, Traugott MT, Graninger M, et al. Assessment of S1, S2 and NCP-specific IgM, IgA, and IgG antibody kinetics in acute SARS-CoV-2 infection by a microarray and twelve other immunoassays. J Clin Microbiol. 2021;JCM.02890-20. doi: 10.1128/JCM.02890-20
  27. Hansen CB, Jarlhelt I, Perez-Alos L, et al. SARS-CoV-2 antibody responses are correlated to disease severity in COVID-19 convalescent individuals. J Immunol. 2021;206(1):109–117. doi: 10.4049/jimmunol.2000898
  28. Peterhoff D, Gluck V, Vogel M, et al. A highly specific and sensitive serological assay detects SARS-CoV-2 antibody levels in COVID-19 patients that correlate with neutralization. Infection. 2021;49(1):75–82. doi: 10.1007/s15010-020-01503-7
  29. Seow J, Graham C, Merrick B, et al. Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans. Nat Microbiol. 2020;5(12):1598–1607. doi: 10.1038/s41564-020-00813-8
  30. Sherina N, Piralla A, Du L, et al. Persistence of SARS-CoV-2-specific B and T cell responses in convalescent COVID-19 patients 6-8 months after the infection. Med (N Y). 2021;2(3):281–295 e284. doi: 10.1016/j.medj.2021.02.001
  31. Gluck V, Grobecker S, Tydykov L, et al. SARS-CoV-2-directed antibodies persist for more than six months in a cohort with mild to moderate COVID-19. Infection. 2021;1–8. doi: 10.1007/s15010-021-01598-6
  32. Iyer AS, Jones FK, Nodoushani A, et al. Persistence and decay of human antibody responses to the receptor binding domain of SARS-CoV-2 spike protein in COVID-19 patients. Sci Immunol. 2020;5(52):eabe0367. doi: 10.1126/sciimmunol.abe0367
  33. Sterlin D, Mathian A, Miyara M, et al. IgA dominates the early neutralizing antibody response to SARS-CoV-2. Sci Transl Med. 2021;13(577):eabd2223. doi: 10.1126/scitranslmed.abd2223
  34. Carsetti R, Zaffina S, Piano Mortari E, et al. Different innate and adaptive immune responses to SARS-CoV-2 infection of asymptomatic, mild, and severe cases. Front Immunol. 2020;11(610300). doi: 10.3389/fimmu.2020.610300
  35. Goh YS, Chavatte JM, Lim Jieling A, et al. Sensitive detection of total anti-Spike antibodies and isotype switching in asymptomatic and symptomatic individuals with COVID-19. Cell Rep Med. 2021;2(2):100193. doi: 10.1016/j.xcrm.2021.100193
  36. Xiao T, Wang Y, Yuan J, et al. Early Viral Clearance and Antibody Kinetics of COVID-19 Among Asymptomatic Carriers. Front Med (Lausanne). 2021;8:595773. doi: 10.3389/fmed.2021.595773
  37. Piccoli L, Park YJ, Tortorici MA, et al. Mapping neutralizing and immunodominant sites on the SARS-CoV-2 spike receptor-binding domain by structure-guided high-resolution serology. Cell. 2020;183(4):1024–1042 e21. doi: 10.1016/j.cell.2020.09.037
  38. Benner SE, Patel EU, Laeyendecker O, et al. SARS-CoV-2 Antibody avidity responses in COVID-19 patients and convalescent plasma donors. J Infect Dis. 2020;222(12):1974–1984. doi: 10.1093/infdis/jiaa581
  39. Lampasona V, Secchi M, Scavini M, et al. Antibody response to multiple antigens of SARS-CoV-2 in patients with diabetes: an observational cohort study. Diabetologia. 2020;63(12):2548–2558. doi: 10.1007/s00125-020-05284-4
  40. Noval MG, Kaczmarek ME, Koide A, et al. Antibody isotype diversity against SARS-CoV-2 is associated with differential serum neutralization capacities. Sci Rep. 2021;11(1):5538. doi: 10.1038/s41598-021-84913-3
  41. Rowntree LC, Chua BY, Nicholson S, et al. Robust correlations across six SARS-CoV-2 serology assays detecting distinct antibody features. Clin Transl Immunology. 2021;10(3):e1258. doi: 10.1002/cti2.1258
  42. Klingler J, Weiss S, Itri V, et al. Role of immunoglobulin M and A antibodies in the neutralization of severe acute respiratory Syndrome Coronavirus 2. J Infect Dis. 2021;223(6):957–970. doi: 10.1093/infdis/jiaa784
  43. Gasser R, Cloutier M, Prevost J, et al. Major role of IgM in the neutralizing activity of convalescent plasma against SARS-CoV-2. Cell Rep. 2021;34(9):108790. doi: 10.1016/j.celrep.2021.108790
  44. Wang Z, Lorenzi JCC, Muecksch F, et al. Enhanced SARS-CoV-2 neutralization by dimeric IgA. Sci Transl Med. 2021;13(577):eabf1555. doi: 10.1126/scitranslmed.abf1555.
  45. Zohar T, Loos C, Fischinger S, et al. Compromised humoral functional evolution tracks SARS-CoV-2 mortality. Cell. 2020;183(6):1508–1519 e1512. doi: 10.1016/j.cell.2020.10.052
  46. Lumley SF, Wei J, O›Donnell D, et al. The duration, dynamics and determinants of SARS-CoV-2 antibody responses in individual healthcare workers. Clin Infect Dis. 2021;ciab004. doi: 10.1093/cid/ciab004
  47. den Hartog G, Vos ER, van den Hoogen LL, et al. Persistence of antibodies to SARS-CoV-2 in relation to symptoms in a nationwide prospective study. Clin Infect Dis. 2021;ciab172. doi: 10.1093/cid/ciab172
  48. Figueiredo-Campos P, Blankenhaus B, Mota C, et al. Seroprevalence of anti-SARS-CoV-2 antibodies in COVID-19 patients and healthy volunteers up to 6 months post disease onset. Eur J Immunol. 2020;50(12):2025–2040. doi: 10.1002/eji.202048970
  49. Wang Y, Li J, Li H, et al. Persistence of SARS-CoV-2-specific antibodies in COVID-19 patients. Int Immunopharmacol. 2021;90:107271. doi: 10.1016/j.intimp.2020.107271
  50. Kumar N, Bhartiya SSingh T. Duration of anti-SARS-CoV-2 antibodies much shorter in India. Vaccine. 2021;39(6):886–888. doi: 10.1016/j.vaccine.2020.10.094
  51. He Z, Ren L, Yang J, et al. Seroprevalence and humoral immune durability of anti-SARS-CoV-2 antibodies in Wuhan, China: a longitudinal, population-level, cross-sectional study. Lancet. 2021;397(10279):1075–1084. doi: 10.1016/S0140-6736(21)00238-5
  52. Byazrova M, Yusubalieva G, Spiridonova A, et al. Pattern of circulating SARS-CoV-2-specific antibody-secreting and memory B-cell generation in patients with acute COVID-19. Clin Transl Immunology. 2021;10(2):e1245. doi: 10.1002/cti2.1245
  53. Minervina AA, Komech EA, Titov A, et al. Longitudinal high-throughput TCR repertoire profiling reveals the dynamics of T-cell memory formation after mild COVID-19 infection. Elife. 2021;10:e63502. doi: 10.7554/eLife.63502
  54. Tan AT, Linster M, Tan CW, et al. Early induction of functional SARS-CoV-2-specific T cells associates with rapid viral clearance and mild disease in COVID-19 patients. Cell Rep. 2021;34(6):108728. doi: 10.1016/j.celrep.2021.108728
  55. Kared H, Redd AD, Bloch EM, et al. SARS-CoV-2-specific CD8+ T cell responses in convalescent COVID-19 individuals. J Clin Invest. 2021;131(5):e145476. doi: 10.1172/JCI145476
  56. Thieme CJ, Anft M, Paniskaki K, et al. Robust T cell response toward spike, membrane, and nucleocapsid SARS-CoV-2 proteins is not associated with recovery in critical COVID-19 patients. Cell Rep Med. 2020;1(6):100092. doi: 10.1016/j.xcrm.2020.100092
  57. Dan JM, Mateus J, Kato Y, et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science. 2021;371(6529):eabf4063. doi: 10.1126/science.abf4063
  58. Kang CK, Kim M, Lee S, et al. Longitudinal analysis of human memory T-Cell Response according to the severity of illness up to 8 months after SARS-CoV-2 infection. J Infect Dis. 2021;jiab159. doi: 10.1093/infdis/jiab159
  59. Shomuradova AS, Vagida MS, Sheetikov SA, et al. SARS-CoV-2 Epitopes Are Recognized by a Public and Diverse Repertoire of Human T Cell Receptors. Immunity. 2020;53(6):1245–1257 e1245. doi: 10.1016/j.immuni.2020.11.004
  60. Lee CH, Pinho MP, Buckley PR, et al. Potential CD8+ T Cell cross-reactivity against SARS-CoV-2 conferred by other Coronavirus strains. Front Immunol. 2020;11:579480. doi: 10.3389/fimmu.2020.579480
  61. Then C, Bak A, Morisset A, et al. The N-terminus of the cauliflower mosaic virus aphid transmission protein P2 is involved in transmission body formation and microtubule interaction. Virus Res. 2021;198356. doi: 10.1016/j.virusres.2021.198356
  62. Zuo J, Dowell AC, Pearce H, et al. Robust SARS-CoV-2-specific T cell immunity is maintained at 6 months following primary infection. Nat Immunol. 2021. doi: 10.1038/s41590-021-00902-8
  63. Turner JS, Day A, Alsoussi WB, et al. SARS-CoV-2 Viral RNA shedding for more than 87 days in an individual with an impaired CD8+ T Cell response. Front Immunol. 2020;11(618402). doi: 10.3389/fimmu.2020.618402
  64. Kusnadi A, Ramirez-Suastegui C, Fajardo V, et al. Severely ill COVID-19 patients display impaired exhaustion features in SARS-CoV-2-reactive CD8(+) T cells. Sci Immunol. 2021;6(55):eabe4782. doi: 10.1126/sciimmunol.abe4782
  65. Zhuang Z, Lai X, Sun J, et al. Mapping and role of T cell response in SARS-CoV-2-infected mice. J Exp Med. 2021;218(4):e20202187. doi: 10.1084/jem.20202187
  66. Channappanavar R, Fett C, Zhao J, et al. Virus-specific memory CD8 T cells provide substantial protection from lethal severe acute respiratory syndrome coronavirus infection. J Virol. 2014;88(19):11034–11044. doi: 10.1128/JVI.01505-14
  67. Westmeier J, Paniskaki K, Karakose Z, et al. Impaired cytotoxic CD8(+) T Cell response in elderly COVID-19 patients. MBio. 2020;11(5):e02243-20. doi: 10.1128/mBio.02243-20
  68. Tang F, Quan Y, Xin ZT, et al. Lack of peripheral memory B cell responses in recovered patients with severe acute respiratory syndrome: a six-year follow-up study. J Immunol. 2011;186(12):7264–7268. doi: 10.4049/jimmunol.0903490
  69. Logunov DY, Dolzhikova IV, Shcheblyakov DV, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021;397(10275):671–681. doi: 10.1016/S0140-6736(21)00234-8
  70. Selhorst P, Van Ierssel S, Michiels J, et al. Symptomatic SARS-CoV-2 reinfection of a health care worker in a Belgian nosocomial outbreak despite primary neutralizing antibody response. Clin Infect Dis. 2020;ciaa1850. doi: 10.1093/cid/ciaa1850

© Федоров В.С., Иванова О.Н., Карпенко И.Л., Иванов А.В., 2021

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах