Сиртуины в патогенетической терапии нейродегенеративных заболеваний

Обложка

Цитировать

Полный текст

Аннотация

Прогрессирующее снижение физиологических функций в процессе старения приводит к различным болезням, которые ложатся тяжёлым бременем на пациентов, их семьи и общество в целом. В связи с ростом средней продолжительности жизни проблемы профилактики и лечения возрастных заболеваний становятся всё более актуальными. В рамках исследований молекулярных механизмов старения значительное внимание уделяется небольшому семейству НАД+-зависимых деацетилаз и деацилаз, названных сиртуинами. Эти белки вовлечены в регуляцию множества внутриклеточных процессов, а нарушение их функций играет важную роль в развитии различных заболеваний, таких как нарушения метаболизма, патологии сердечно-сосудистой системы и иных внутренних органов, болезни опорно-двигательного аппарата, нейродегенерация. Интересно отметить, что активность сиртуинов в той или иной мере поддаётся модуляции под воздействием фармакологических средств, что делает их перспективной мишенью в профилактике и терапии возрастных заболеваний. Цель настоящего обзора — обобщить влияние сиртуинов на развитие и патогенез нейродегенеративных заболеваний, включая зарегистрированные клинические исследования фармакологических препаратов, воздействующих на активность сиртуинов.

Об авторах

Екатерина Михайловна Самойлова

Институт молекулярной биологии имени В.А. Энгельгардта; Федеральный центр мозга и нейротехнологий; Новосибирский национальный исследовательский государственный университет

Email: samoyket@gmail.com
ORCID iD: 0000-0002-0485-6581
SPIN-код: 3014-6243
Россия, Москва; Москва; Новосибирск

Алина Андреевна Иванова

Федеральный научно-клинический центр специализированных видов медицинской помощи и медицинских технологий

Email: Alina.iva2000@mail.ru
ORCID iD: 0009-0009-5266-9201
Россия, Москва

Петр Павлович Лактионов

Новосибирский национальный исследовательский государственный университет; Институт молекулярной и клеточной биологии Сибирского отделения Российской академии наук

Email: laktionov@mcb.nsc.ru
ORCID iD: 0000-0003-2174-6496
SPIN-код: 7579-3460
Scopus Author ID: 57191597308
ResearcherId: N-7957-2015

канд. биол. наук

Россия, Новосибирск; Новосибирск

Владимир Анатольевич Кальсин

Институт молекулярной биологии имени В.А. Энгельгардта; Федеральный центр мозга и нейротехнологий; Федеральный научно-клинический центр специализированных видов медицинской помощи и медицинских технологий

Email: vkalsin@mail.ru
ORCID iD: 0000-0003-2705-3578
SPIN-код: 1046-8801
Россия, Москва; Москва; Москва

Станислав Евгеньевич Романов

Новосибирский национальный исследовательский государственный университет; Институт молекулярной и клеточной биологии Сибирского отделения Российской академии наук

Автор, ответственный за переписку.
Email: s.romanov@g.nsu.ru
ORCID iD: 0000-0002-5989-5756
SPIN-код: 3387-6944
Scopus Author ID: 57201430841
ResearcherId: N-6935-2015

канд. биол. наук

Россия, Новосибирск; Новосибирск

Список литературы

  1. Imai S, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000;403(6771): 795-800. doi: 10.1038/35001622
  2. Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun. 2000;273(2):793-798. doi: 10.1006/bbrc.2000.3000
  3. Moniot S, Schutkowski M, Steegborn C. Crystal structure analysis of human Sirt2 and its ADP-ribose complex. J Struct Biol. 2013;182(2):136-143. doi: 10.1016/j.jsb.2013.02.012
  4. Feldman JL, Dittenhafer-Reed KE, Denu JM. Sirtuin catalysis and regulation. J Biol Chem. 2012;287(51):42419-42427. doi: 10.1074/jbc.R112.378877
  5. Michishita E, Park JY, Burneskis JM, et al. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT Proteins. Mol Biol Cell. 2005;16(10):4623-4635. doi: 10.1091/mbc.e05-01-0033
  6. North BJ, Verdin E. Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis. PLoS One. 2007;2(8):e784. doi: 10.1371/journal.pone.0000784
  7. Scher MB, Vaquero A, Reinberg D. SirT3 is a nuclear NAD+-dependent histone deacetylase that translocates to the mitochondria upon cellular stress. Genes Dev. 2007;21(8): 920-928. doi: 10.1101/gad.1527307
  8. Bai W, Zhang X. Nucleus or cytoplasm? The mysterious case of SIRT1’s subcellular localization. Cell Cycle. 2016;15(24): 3337-3338. doi: 10.1080/15384101.2016.1237170
  9. Du Y, Hu H, Hua C, et al. Tissue distribution, subcellular localization, and enzymatic activity analysis of human SIRT5 isoforms. Biochem Biophys Res Commun. 2018;503(2):763-769. doi: 10.1016/j.bbrc.2018.06.073
  10. Piracha ZZ, Saeed U, Kim J, et al. An alternatively spliced sirtuin 2 isoform 5 inhibits hepatitis B virus replication from cccDNA by repressing epigenetic modifications made by histone lysine methyltransferases. J Virol. 2020;94(16):e00926-20. doi: 10.1128/JVI.00926-20
  11. Sauve AA, Wolberger C, Schramm VL, Boeke JD. The biochemistry of sirtuins. Annu Rev Biochem. 2006;75(1): 435-465. doi: 10.1146/annurev.biochem.74.082803.133500
  12. Du J, Zhou Y, Su X, et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science. 2011;334(6057): 806-809. doi: 10.1126/science.1207861
  13. Tan M, Peng C, Anderson KA, et al. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab. 2014;19(4):605-617. doi: 10.1016/j.cmet.2014.03.014
  14. Laurent G, German NJ, Saha AK, et al. SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol Cell. 2013;50(5):686-698. doi: 10.1016/j.molcel.2013.05.012
  15. Mathias RA, Greco TM, Oberstein A, et al. Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell. 2014;159(7):1615-1625. doi: 10.1016/j.cell.2014.11.046
  16. Jiang H, Khan S, Wang Y, et al. SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. Nature. 2013;496(7443):110-113. doi: 10.1038/nature12038
  17. Zhang X, Spiegelman NA, Nelson OD, et al. SIRT6 regulates Ras-related protein R-Ras2 by lysine defatty-acylation. Elife. 2017;6:e25158. doi: 10.7554/eLife.25158
  18. Haigis MC, Mostoslavsky R. Haigis KM, et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic β cells. Cell. 2006;126(5):941-954. doi: 10.1016/j.cell.2006.06.057
  19. Van Meter M, Kashyap M, Rezazadeh S, et al. SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. Nat Commun. 2014;5(1):5011. doi: 10.1038/ncomms6011
  20. Simonet NG, Thackray JK, Vazquez BN, et al. SirT7 auto-ADP-ribosylation regulates glucose starvation response through mH2A1. Sci Adv. 2020;6(30):eaaz2590. doi: 10.1126/sciadv.aaz2590
  21. Lin H. The enzymatic activities of sirtuins. In: Introductory review on sirtuins in biology, aging, and disease. Elsevier; 2018. Р. 45-62. doi: 10.1016/b978-0-12-813499-3.00004-6
  22. Wu QJ, Zhang TN, Chen HH, et al. The sirtuin family in health and disease. Signal Transduct Target Ther. 2022;7(1):402. doi: 10.1038/s41392-022-01257-8
  23. Wątroba M, Szukiewicz D. The role of sirtuins in aging and age-related diseases. Adv Med Sci. 2016;61(1):52-62. doi: 10.1016/j.advms.2015.09.003
  24. She DT, Wong LJ, Baik SH, Arumugam TV. SIRT2 inhibition confers neuroprotection by downregulation of FOXO3a and mapk signaling pathways in ischemic stroke. Mol Neurobiol. 2018;55(12):9188-9203. doi: 10.1007/s12035-018-1058-0
  25. Perone I, Ghena N, Wang J, et al. Mitochondrial SIRT3 deficiency results in neuronal network hyperexcitability, accelerates age-related Aβ pathology, and renders neurons vulnerable to Aβ toxicity. Neuromolecular Med. 2023;25(1):27-39. doi: 10.1007/s12017-022-08713-2
  26. Godoy JA, Zolezzi JM, Braidy N, Inestrosa NC. Role of Sirt1 during the ageing process: Relevance to protection of synapses in the brain. Mol Neurobiol. 2014;50(3):744-756. doi: 10.1007/s12035-014-8645-5
  27. Jung ES, Choi H, Song H, et al. p53-dependent SIRT6 expression protects Aβ42-induced DNA damage. Sci Rep. 2016;6(1):25628. doi: 10.1038/srep25628
  28. Diaz-Cañestro C, Merlini M, Bonetti NR, et al. Sirtuin 5 as a novel target to blunt blood-brain barrier damage induced by cerebral ischemia/reperfusion injury. Int J Cardiol. 2018;260:148-155. doi: 10.1016/j.ijcard.2017.12.060
  29. Kumar R, Chaterjee P, Sharma PK, et al. Sirtuin1: A promising serum protein marker for early detection of Alzheimer’s disease. PLoS One. 2013;8(4):e61560. doi: 10.1371/journal.pone.0061560
  30. Kumar R, Mohan N, Upadhyay AD, et al. Identification of serum sirtuins as novel noninvasive protein markers for frailty. Aging Cell. 2014;13(6):975-980. doi: 10.1111/acel.12260
  31. Anwar T, Khosla S, Ramakrishna G. Increased expression of SIRT2 is a novel marker of cellular senescence and is dependent on wild type p53 status. Cell Cycle. 2016;15(14):1883-1897. doi: 10.1080/15384101.2016.1189041
  32. Scheltens P, de Strooper B, Kivipelto M, et al. Alzheimer’s disease. Lancet. 2021;397(10284):1577-1590. doi: 10.1016/S0140-6736(20)32205-4
  33. Hanseeuw BJ, Betensky RA, Jacobs HI, et al. Association of amyloid and tau with cognition in preclinical alzheimer disease. JAMA Neurol. 2019;76(8):915-924. doi: 10.1001/jamaneurol.2019.1424
  34. Sperling RA, Aisen PS, Beckett LA, et al. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging‐Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):280-292. doi: 10.1016/j.jalz.2011.03.003
  35. Chen G, Xu T, Yan Y, et al. Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacol Sin. 2017;38(9):1205-1235. doi: 10.1038/aps.2017.28
  36. Lee HR, Shin HK, Park SY, et al. Cilostazol suppresses β‐amyloid production by activating a disintegrin and metalloproteinase 10 via the upregulation of SIRT1‐coupled retinoic acid receptor‐β. J Neurosci Res. 2014;92(11):1581-1590. doi: 10.1002/jnr.23421
  37. Guo J, Cheng J, North BJ, Wei W. Functional analyses of major cancer-related signaling pathways in Alzheimer’s disease etiology. Biochim Biophys Acta Rev Cancer. 2017;1868(2): 341-358. doi: 10.1016/j.bbcan.2017.07.001
  38. Wang Y, Yang J, Hong TT, et al. RTN4B‐mediated suppression of Sirtuin 2 activity ameliorates β‐amyloid pathology and cognitive impairment in Alzheimer’s disease mouse model. Aging Cell. 2020;19(8):e13194. doi: 10.1111/acel.13194
  39. Bai N, Li N, Cheng R, et al. Inhibition of SIRT2 promotes APP acetylation and ameliorates cognitive impairment in APP/PS1 transgenic mice. Cell Rep. 2022;40(2):111062. doi: 10.1016/j.celrep.2022.111062
  40. Wang Y, Mandelkow E. Tau in physiology and pathology. Nat Rev Neurosci. 2016;17(1):22-35. doi: 10.1038/nrn.2015.1
  41. Min SW, Cho SH, Zhou Y, et al. Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron. 2010; 67(6):953-966. doi: 10.1016/j.neuron.2010.08.044
  42. Cohen TJ, Guo JL, Hurtado DE, et al. The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat Commun. 2011;2(1):252. doi: 10.1038/ncomms1255
  43. Min SW, Chen X, Tracy TE, et al. Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat Med. 2015;21(10):1154-1162. doi: 10.1038/nm.3951
  44. Tracy TE, Sohn PD, Minami SS, et al. Acetylated tau obstructs KIBRA-mediated signaling in synaptic plasticity and promotes tauopathy-related memory loss. Neuron. 2016;90(2):245-260. doi: 10.1016/j.neuron.2016.03.005
  45. Min SW, Sohn PD, Li Y, et al. SIRT1 deacetylates tau and reduces pathogenic tau spread in a mouse model of tauopathy. J Neurosci. 2018;38(15):3680-3688. doi: 10.1523/JNEUROSCI.2369-17.2018
  46. Esteves AR, Filipe F, Magalhães JD, et al. The role of beclin-1 acetylation on autophagic flux in Alzheimer’s disease. Mol Neurobiol. 2019;56(8):5654-5670. doi: 10.1007/s12035-019-1483-8
  47. Kaluski S, Portillo M, Besnard A, et al. Neuroprotective functions for the histone deacetylase SIRT6. Cell Rep. 2017;18(13): 3052-3062. doi: 10.1016/j.celrep.2017.03.008
  48. Feng X, Liang N, Zhu D, et al. Resveratrol inhibits β-amyloid-induced neuronal apoptosis through regulation of SIRT1-ROCK1 signaling pathway. PLoS One. 2013;8(3):e59888. doi: 10.1371/journal.pone.0059888
  49. Esteves AR, Palma AM, Gomes R, et al. Acetylation as a major determinant to microtubule-dependent autophagy: Relevance to Alzheimer’s and Parkinson disease pathology. Biochim Biophys Acta Mol Basis Dis. 2019;1865(8):2008-2023. doi: 10.1016/j.bbadis.2018.11.014
  50. Wang X, Ma S, Yang B, et al. Resveratrol promotes hUC-MSCs engraftment and neural repair in a mouse model of Alzheimer’s disease. Behavi Brain Res. 2018;339:297-304. doi: 10.1016/j.bbr.2017.10.032
  51. Cao K, Dong YT, Xiang J, et al. The neuroprotective effects of SIRT1 in mice carrying the APP/PS1 double-transgenic mutation and in SH-SY5Y cells over-expressing human APP670/671 may involve elevated levels of α7 nicotinic acetylcholine receptors. Aging (Albany NY). 2020;12(2):1792-1807. doi: 10.18632/aging.102713
  52. Li MZ, Zheng LJ, Shen J, et al. SIRT1 facilitates amyloid beta peptide degradation by upregulating lysosome number in primary astrocytes. Neural Regen Res. 2018;13(11):2005. doi: 10.4103/1673-5374.239449
  53. Cheignon C, Tomas M, Bonnefont-Rousselot D, et al. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 2018;14:450-464. doi: 10.1016/j.redox.2017.10.014
  54. Bhat AH, Dar KB, Anees S, et al. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases: A mechanistic insight. Biomed Pharmacother. 2015;74:101-110. doi: 10.1016/j.biopha.2015.07.025
  55. Eletto D, Chevet E, Argon Y, Appenzeller-Herzog C. Redox controls UPR to control redox. J Cell Sci. 2014;127(Pt 17): 3649-3658. doi: 10.1242/jcs.153643
  56. Peña-Oyarzun D, Bravo-Sagua R, Diaz-Vega A, et al. Autophagy and oxidative stress in non-communicable diseases: A matter of the inflammatory state? Free Radic Biol Med. 2018;124:61-78. doi: 10.1016/j.freeradbiomed.2018.05.084
  57. Llanos-González E, Henares-Chavarino ÁA, Pedrero-Prieto CM, et al. Interplay between mitochondrial oxidative disorders and proteostasis in Alzheimer’s disease. Front Neurosci. 2020;13:1444. doi: 10.3389/fnins.2019.01444
  58. Lee J, Kim Y, Liu T, et al. SIRT3 deregulation is linked to mitochondrial dysfunction in Alzheimer’s disease. Aging Cell. 2018;17(1):e12679. doi: 10.1111/acel.12679
  59. Marchenko ND, Zaika A, Moll UM. Death signal-induced localization of p53 protein to mitochondria. J Biol Chem. 2000;275(21):16202-16212. doi: 10.1074/jbc.275.21.16202
  60. Mahyar-Roemer M, Fritzsche C, Wagner S, et al. Mitochondrial p53 levels parallel total p53 levels independent of stress response in human colorectal carcinoma and glioblastoma cells. Oncogene. 2004;23(37):6226-6236. doi: 10.1038/sj.onc.1207637
  61. Mihara M, Erster S, Zaika A, et al. p53 has a direct apoptogenic role at the mitochondria. Mol Cell. 2003;11(3):577-590. doi: 10.1016/s1097-2765(03)00050-9
  62. Zhao Y, Chaiswing L, Velez JM, et al. p53 translocation to mitochondria precedes its nuclear translocation and targets mitochondrial oxidative defense protein-manganese superoxide dismutase. Cancer Res. 2005;65(9):3745-3750. doi: 10.1158/0008-5472.CAN-04-3835
  63. Ohyagi Y, Asahara H, Chui DH, et al. Intracellular Aβ42 activates p53 promoter: A pathway to neurodegeneration in Alzheimer’s disease. FASEB J. 2005;19(2):255-257. doi: 10.1096/fj.04-2637fje
  64. Ansari A, Rahman MS, Saha SK, et al. Function of the SIRT3 mitochondrial deacetylase in cellular physiology, cancer, and neurodegenerative disease. Aging Cell. 2017;16(1):4-16. doi: 10.1111/acel.12538
  65. Meng H, Yan WY, Lei YH, et al. SIRT3 regulation of mitochondrial quality control in neurodegenerative diseases. Front Aging Neurosci. 2019;11:313. doi: 10.3389/fnagi.2019.00313
  66. Jiang DQ, Wang Y, Li MX, et al. SIRT3 in neural stem cells attenuates microglia activation-induced oxidative stress injury through mitochondrial pathway. Front Cell Neurosci. 2017;11:7. doi: 10.3389/fncel.2017.00007
  67. Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 2004;303(5666):2011-2015. doi: 10.1126/science.1094637
  68. Rangarajan P, Karthikeyan A, Lu J, et al. Sirtuin 3 regulates Foxo3a-mediated antioxidant pathway in microglia. Neuroscience. 2015;311:398-414. doi: 10.1016/j.neuroscience.2015.10.048
  69. Braak H, del Tredici K. Neuropathological staging of brain pathology in sporadic Parkinson’s disease: Separating the wheat from the chaff. J Parkinsons Dis. 2017;7(s1):S71-S85. doi: 10.3233/JPD-179001
  70. Gerlach M, Double KL, Ben-Shachar D, et al. Neuromelanin and its interaction with iron as a potential risk factor for dopaminergic neurodegeneration underlying Parkinson’s disease. Neurotox Res. 2003;5(1-2):35-44. doi: 10.1007/BF03033371
  71. Klein C, Westenberger A. Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2(1):a008888-a008888. doi: 10.1101/cshperspect.a008888
  72. Kim C, Alcalay R. Genetic forms of Parkinson’s disease. Semin Neurol. 2017;37(2):135-146. doi: 10.1055/s-0037-1601567
  73. Jankovic J, Tan EK. Parkinson’s disease: Etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry. 2020;91(8):795-808. doi: 10.1136/jnnp-2019-322338
  74. Simon DK, Tanner CM, Brundin P. Parkinson Disease epidemiology, pathology, genetics, and pathophysiology. Clin Geriatr Med. 2020;36(1):1-12. doi: 10.1016/j.cger.2019.08.002
  75. Nandipati S, Litvan I. Environmental exposures and Parkinson’s disease. Int J Environ Res Public Health. 2016;13(9):881. doi: 10.3390/ijerph13090881
  76. Trancikova A, Tsika E, Moore DJ. Mitochondrial dysfunction in genetic animal models of Parkinson’s disease. Antioxid Redox Signal. 2012;16(9):896-919. doi: 10.1089/ars.2011.4200
  77. Islam MT. Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res. 2017;39(1):73-82. doi: 10.1080/01616412.2016.1251711
  78. Stajic D, Selakovic D, Jovicic N, et al. The role of galectin-3 in modulation of anxiety state level in mice. Brain Behav Immun. 2019;78:177-187. doi: 10.1016/j.bbi.2019.01.019
  79. Chinta SJ, Andersen JK. Redox imbalance in Parkinson’s disease. Biochim Biophys Acta. 2008;1780(11):1362-1367. doi: 10.1016/j.bbagen.2008.02.005
  80. Anamika KA, Acharjee P, Acharjee A, Trigun SK. Mitochondrial SIRT3 and neurodegenerative brain disorders. J Chem Neuroanat. 2019;95:43-53. doi: 10.1016/j.jchemneu.2017.11.009
  81. Shi H, Deng HX, Gius D, et al. Sirt3 protects dopaminergic neurons from mitochondrial oxidative stress. Hum Mol Genet. 2017;26(10):1915-1926. doi: 10.1093/hmg/ddx100
  82. Zeng R, Wang X, Zhou Q, et al. Icariin protects rotenone-induced neurotoxicity through induction of SIRT3. Toxicol Appl Pharmacol. 2019;379:114639. doi: 10.1016/j.taap.2019.114639
  83. Park JH, Burgess JD, Faroqi AH, et al. Alpha-synuclein-induced mitochondrial dysfunction is mediated via a sirtuin 3-dependent pathway. Mol Neurodegener. 2020;15(1):5. doi: 10.1186/s13024-019-0349-x
  84. Uittenbogaard M, Chiaramello A. Mitochondrial biogenesis: A therapeutic target for neurodevelopmental disorders and neurodegenerative diseases. Curr Pharm Des. 2014;20(35): 5574-5593. doi: 10.2174/1381612820666140305224906
  85. Singh P, Hanson PS, Morris CM. SIRT1 ameliorates oxidative stress induced neural cell death and is down-regulated in Parkinson’s disease. BMC Neurosci. 2017;18(1): 46. doi: 10.1186/s12868-017-0364-1
  86. Guo YJ, Dong SY, Cui XX, et al. Resveratrol alleviates MPTP-induced motor impairments and pathological changes by autophagic degradation of α-synuclein via SIRT1-deacetylated LC3. Mol Nutr Food Res. 2016;60(10):2161-2175. doi: 10.1002/mnfr.201600111
  87. Valdinocci D, Simões RF, Kovarova J, et al. Intracellular and intercellular mitochondrial dynamics in Parkinson’s disease. Front Neurosci. 2019;13:930. doi: 10.3389/fnins.2019.00930
  88. Tang BL. Sirt1 and the mitochondria. Mol Cells. 2016;39(2): 87-95. doi: 10.14348/molcells.2016.2318
  89. De Oliveira RM, Vicente Miranda H, Francelle L, et al. The mechanism of sirtuin 2--mediated exacerbation of alpha-synuclein toxicity in models of Parkinson disease. PLoS Biol. 2017;15(3):e2000374. doi: 10.1371/journal.pbio.2000374
  90. Outeiro TF, Kontopoulos E, Altmann SM, et al. Sirtuin 2 inhibitors rescue α-synuclein-mediated toxicity in models of Parkinson’s disease. Science. 2007;317(5837):516-519. doi: 10.1126/science.1143780
  91. Chen X, Mai H, Cai Y, et al. Rs2015 polymorphism in miRNA target site of sirtuin2 gene is associated with the risk of Parkinson’s disease in chinese han population. Biomed Res Int. 2019;2019:1498034. doi: 10.1155/2019/1498034
  92. Carafa V, Rotili D, Forgione M, et al. Sirtuin functions and modulation: From chemistry to the clinic. Clin Epigenetics. 2016;8(1):61. doi: 10.1186/s13148-016-0224-3
  93. Wang Y, He J, Liao M, et al. An overview of sirtuins as potential therapeutic target: Structure, function and modulators. Eur J Med Chem. 2019;161:48-77. doi: 10.1016/j.ejmech.2018.10.028
  94. Tse T, Williams RJ, Zarin DA. Reporting “basic results” in ClinicalTrials.gov. Chest. 2009;136(1):295-303. doi: 10.1378/chest.08-3022
  95. Covarrubias AJ, Perrone R, Grozio A, Verdin E. NAD+ metabolism and its roles in cellular processes during ageing. Nat Rev Mol Cell Biol. 2021;22(2):119-141. doi: 10.1038/s41580-020-00313-x
  96. Ramsey KM, Mills KF, Satoh A, Imai S. Age‐associated loss of Sirt1‐mediated enhancement of glucose‐stimulated insulin secretion in beta cell‐specific Sirt1‐overexpressing (BESTO) mice. Aging Cell. 2008;7(1):78-88. doi: 10.1111/j.1474-9726.2007.00355.x
  97. Gomes AP, Price NL, Ling AJ, et al. Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell. 2013;155(7):1624-1638. doi: 10.1016/j.cell.2013.11.037
  98. Chang HC, Guarente L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell. 2013;153(7):1448-1460. doi: 10.1016/j.cell.2013.05.027
  99. Bagga P, Hariharan H, Wilson NE, et al. Single-voxel 1H MR spectroscopy of cerebral nicotinamide adenine dinucleotide (NAD+) in humans at 7T using a 32-channel volume coil. Magn Reson Med. 2020;83(3):806-814. doi: 10.1002/mrm.27971
  100. Zhu XH, Lu M, Lee BY, et al. In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences. Proc Natl Acad Sci USA. 2015;112(9):2876-2881. doi: 10.1073/pnas.1417921112
  101. Guest J, Grant R, Mori TA, Croft KD. Changes in oxidative damage, inflammation and [NAD(H)] with age in cerebrospinal fluid. PLoS One. 2014;9(1):e85335. doi: 10.1371/journal.pone.0085335
  102. Brakedal B, Dölle C, Riemer F, et al. The NADPARK study: A randomized phase I trial of nicotinamide riboside supplementation in Parkinson’s disease. Cell Metab. 2022; 34(3):396-407.e6. doi: 10.1016/j.cmet.2022.02.001
  103. Pencina KM, Lavu S, dos Santos M, et al. MIB-626, an oral formulation of a microcrystalline unique polymorph of β-nicotinamide mononucleotide, increases circulating nicotinamide adenine dinucleotide and its metabolome in middle-aged and older adults. J Gerontol A Biol Sci Med Sci. 2023;78(1):90-96.
  104. Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003;425(6954):191-196. doi: 10.1038/nature01960
  105. Bertelli AA, Giovannini L, Giannessi D, et al. Antiplatelet activity of synthetic and natural resveratrol in red wine. Int J Tissue React. 1995;17(1):1-3.
  106. Chen T, Li J, Liu J, et al. Activation of SIRT3 by resveratrol ameliorates cardiac fibrosis and improves cardiac function via the TGF-β/Smad3 pathway. Am J Physiol Heart Circ Physiol. 2015;308(5):H424-H434. doi: 10.1152/ajpheart.00454.2014
  107. Gertz M, Nguyen GT, Fischer F, et al. A molecular mechanism for direct sirtuin activation by resveratrol. PLoS One. 2012;7(11):e49761. doi: 10.1371/journal.pone.0049761
  108. Pezzuto JM. Resveratrol: Twenty years of growth, development and controversy. Biomol Ther (Seoul). 2019;27(1):1-14. doi: 10.4062/biomolther.2018.176
  109. Ren Z, Wang L, Cui J, et al. Resveratrol inhibits NF-kB signaling through suppression of p65 and IkappaB kinase activities. Pharmazie. 2013;68(8):689-694.
  110. Moussa C, Hebron M, Huang X, et al. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J Neuroinflammation. 2017;14(1):1. doi: 10.1186/s12974-016-0779-0
  111. Liu T, Yang Q, Zhang X, et al. Quercetin alleviates kidney fibrosis by reducing renal tubular epithelial cell senescence through the SIRT1/PINK1/mitophagy axis. Life Sci. 2020;257:118116. doi: 10.1016/j.lfs.2020.118116
  112. Hu T, Lu X, Shi J, et al. Quercetin protects against diabetic encephalopathy via SIRT1/NLRP3 pathway in db/db mice. J Cell Mol Med. 2020;24(6):3449-3459. doi: 10.1111/jcmm.15026
  113. Dong J, Zhang X, Zhang L, et al. Quercetin reduces obesity-associated ATM infiltration and inflammation in mice: A mechanism including AMPKα1/SIRT1. J Lipid Res. 2014;55(3):363-374. doi: 10.1194/jlr.M038786
  114. Acosta JC, Banito A, Wuestefeld T, et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol. 2013;15(8):978-990. doi: 10.1038/ncb2784
  115. Keating GM. Dasatinib: A review in chronic myeloid leukaemia and Ph+ acute lymphoblastic leukaemia. Drugs. 2017;77(1): 85-96. doi: 10.1007/s40265-016-0677-x
  116. Chaib S, Tchkonia T, Kirkland JL. Cellular senescence and senolytics: The path to the clinic. Nat Med. 2022;28(8): 1556-1568. doi: 10.1038/s41591-022-01923-y
  117. Musi N, Valentine JM, Sickora KR, et al. Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell. 2018;17(6):e12840. doi: 10.1111/acel.12840
  118. Gonzales MM, Garbarino VR, Kautz TF, et al. Senolytic therapy in mild Alzheimer’s disease: A phase 1 feasibility trial. Nat Med. 2023;29(10):2481-2488. doi: 10.1038/s41591-023-02543-w
  119. Zoico E, Nori N, Darra E, et al. Senolytic effects of quercetin in an in vitro model of pre-adipocytes and adipocytes induced senescence. Sci Rep. 2021;11(1):23237. doi: 10.1038/s41598-021-02544-0

© Эко-Вектор, 2024

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах