Practical application of massively parallel reporter assay in biotechnology and medicine

Cover Page

Cite item

Full Text

Abstract

The development and viability of an organism relies on tissue-specific gene programs. The genome regulatory elements play a key role in the regulation of such programs, whereas its disfunction can lead to the establishment of various pathologies, including cancer, congenital disorders, and autoimmune diseases. The development of high-throughput approaches in genomics has led to the emergence of massively parallel reporter assays (MPRA), which enable genome-wide screening and functional verification of regulatory elements. Although MPRA was originally used for investigation of fundamental aspects of epigenetics, it also has a great potential for clinical and practical biotechnology. Currently, MPRA is used for validation of clinically significant mutations, identification of tissue-specific regulatory elements, identification of the favorable loci for transgene integration, as well as represents an essential tool for creating highly efficient expression systems, with a wide range of applications from protein production and design of novel therapeutic antibody super-producers to gene therapy. In this review, the basic principles and areas of practical application of high-throughput reporter assays will be discussed.

About the authors

Stanislav E. Romanov

Novosibirsk State University; Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: romanov@mcb.nsc.ru
ORCID iD: 0000-0002-5989-5756
SPIN-code: 3387-6944
Scopus Author ID: 57201430841
ResearcherId: N-6935-2015
Russian Federation, Novosibirsk; 8/2, Acad. Lavrentiev Ave., Novosibirsk, 630090

Petr P. Laktionov

Novosibirsk State University; Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences

Email: laktionov@mcb.nsc.ru
ORCID iD: 0000-0003-2174-6496
SPIN-code: 7579-3460
Scopus Author ID: 57191597308
ResearcherId: N-7957-2015

PhD

Russian Federation, Novosibirsk; 8/2, Acad. Lavrentiev Ave., Novosibirsk, 630090

References

  1. Oudelaar AM, Higgs DR. The relationship between genome structure and function. Nat Rev Genet. 2021;22(3):154–168. doi: 10.1038/s41576-020-00303-x
  2. Preissl S, Gaulton KJ, Ren B. Characterizing cis-regulatory elements using single-cell epigenomics. Nat Rev Genet. 2023; 24(1):21–43. doi: 10.1038/s41576-022-00509-1
  3. Bradner JE, Hnisz D, Young RA. Transcriptional addiction in cancer. Cell. 2017;168(4):629–643. doi: 10.1016/j.cell.2016.12.013
  4. Chatterjee S, Ahituv N. Gene regulatory elements, major drivers of human disease. Annu Rev Genomics Hum Genet. 2017;18: 45–63. doi: 10.1146/annurev-genom-091416-035537
  5. Corradin O, Saiakhova A, Akhtar-Zaidi B, et al. Combinatorial effects of multiple enhancer variants in linkage disequilibrium dictate levels of gene expression to confer susceptibility to common traits. Genom Res. 2014;24(1):1–13. doi: 10.1101/gr.164079.113
  6. Maurano MT, Humbert R. Rynes E, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337(6099):1190–1195. doi: 10.1126/science.1222794
  7. Claringbould A, Zaugg JB. Enhancers in disease: molecular basis and emerging treatment strategies. Trends Mol Med. 2021; 27(11):1060–1073. doi: 10.1016/j.molmed.2021.07.012
  8. Ernst J, Kheradpour P, Mikkelsen TS, et al. Mapping and analysis of chromatin state dynamics in nine human cell types. Nature. 2011;473(7345):43–49. doi: 10.1038/nature09906
  9. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414): 57–74. doi: 10.1038/nature11247
  10. Lonsdale J, Thomas J, Salvatore M, et al. The genotype-tissue expression (GTEx) project. Nat Genet. 2013;45(6):580–585. doi: 10.1038/ng.2653
  11. Lee CP, Ko AM, Chiang SL, et al. Regulatory elements in vectors containing the ctEF-1α first intron and double enhancers for an efficient recombinant protein expression system. Scie Rep. 2018;8(1):15396. doi: 10.1038/s41598-018-33500-0
  12. Ingusci S, Verlengia G, Soukupova M, et al. Gene therapy tools for brain diseases. Front Pharmacol. 2019;10:724. doi: 10.3389/fphar.2019.00724
  13. Pan D, Büning H, Ling C. Rational design of gene therapy vectors. Mol Ther Method Clin Dev. 2019;12:246–247. doi: 10.1016/j.omtm.2019.01.009
  14. Xu D, Wang X, Jia Y, et al. SV40 intron, a potent strong intron element that effectively increases transgene expression in transfected Chinese hamster ovary cells. J Cell Mol Med. 2018; 22(4):2231–2239. doi: 10.1111/jcmm.13504
  15. Romanov SE, Kalashnikova DA, Laktionov PP. Methods of massive parallel reporter assays for investigation of enhancers. Vavilovskii Zhurnal Genet Selektsii. 2021;25(3):344–355. doi: 10.18699/VJ21.038
  16. Thurman RE, Rynes E, Humbert R, et al. The accessible chromatin landscape of the human genome. Nature. 2012;489(7414):75–82. doi: 10.1038/nature11232
  17. Andersson R, Sandelin A. Determinants of enhancer and promoter activities of regulatory elements. Nat Rev Genet. 2020;21(2):71–87. doi: 10.1038/s41576-019-0173-8
  18. Furlong EE, Levine M. Developmental enhancers and chromosome topology. Science. 2018;361(6409):1341–1345. doi: 10.1126/science.aau0320
  19. Pang B, van Weerd JH, Hamoen FL, Snyder MP. Identification of non-coding silencer elements and their regulation of gene expression. Nat Rev Mol Cell Biol. 2022. doi: 10.1038/s41580-022-00549-9
  20. Chen D, Lei EP. Function and regulation of chromatin insulators in dynamic genome organization. Curr Opin Cell Biol. 2019;58: 61–68. doi: 10.1016/j.ceb.2019.02.001
  21. Haberle V, Stark A. Eukaryotic core promoters and the functional basis of transcription initiation. Nat Rev Mol Cell Biol. 2018;19(10):621–637. doi: 10.1038/s41580-018-0028-8
  22. Lettice LA, Williamson I, Devenney PS, et al. Development of five digits is controlled by a bipartite long-range cis-regulator. Development. 2014;141(8):1715–1725. doi: 10.1242/dev.095430
  23. Pennacchio LA, Bickmore W, Dean A, et al. Enhancers: five essential questions. Nat Rev Gen. 2013;14(4):288–295. doi: 10.1038/nrg3458
  24. Dickel DE, Ypsilanti AR, Pla R, et al. Ultraconserved enhancers are required for normal development. Cell. 2018;172(3):491–499.e15. doi: 10.1016/j.cell.2017.12.017
  25. Sur I, Taipale J. The role of enhancers in cancer. Nat Rev Canc. 2016;16(8):483–493. doi: 10.1038/nrc.2016.62
  26. Bell AC, West AG, Felsenfeld G. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell. 1999;98(3):387–396. doi: 10.1016/s0092-8674(00)81967-4
  27. Kellum R, Schedl P. A position-effect assay for boundaries of higher order chromosomal domains. Cell. 1991;64(5):941–950. doi: 10.1016/0092-8674(91)90318-s
  28. Davidson IF, Peters JM. Genome folding through loop extrusion by SMC complexes. Nat Rev Mol Cell Biol. 2021;22(7):445–464. doi: 10.1038/s41580-021-00349-7
  29. Hnisz D, Day DS, Young RA. Insulated neighborhoods: structural and functional units of mammalian gene control. Cell. 2016;167(5):1188–1200. doi: 10.1016/j.cell.2016.10.024
  30. Dixon JR, Selvaraj S, Yue F, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 2012;485(7398):376–380. doi: 10.1038/nature11082
  31. Flavahan WA, Drier Y, Johnstone SE, et al. Altered chromosomal topology drives oncogenic programs in SDH-deficient GISTs. Nature. 2019;575(7781):229–233. doi: 10.1038/s41586-019-1668-3
  32. Hnisz D, Weintraub AS, Day DS, et al. Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science. 2016;351(6280):1454–1458. doi: 10.1126/science.aad9024
  33. Rhie SK, Perez AA, Lay FD, et al. A high-resolution 3D epigenomic map reveals insights into the creation of the prostate cancer transcriptome. Nat Commun. 2019;10(1):4154. doi: 10.1038/s41467-019-12079-8
  34. Sun JH, Zhou L, Emerson DJ, et al. Disease-associated short tandem repeats co-localize with chromatin domain boundaries. Cell. 2018;175(1):224–238.e15. doi: 10.1016/j.cell.2018.08.005
  35. Harris MB, Mostecki J, Rothman PB. Repression of an interleukin-4-responsive promoter requires cooperative BCL-6 function. J Biol Chem. 2005;280(13):13114–13121. doi: 10.1074/jbc.M412649200
  36. Lanzuolo C, Roure V, Dekker J, et al. Polycomb response elements mediate the formation of chromosome higher-order structures in the bithorax complex. Nat Cell Biol. 2007;9(10): 1167–1174. doi: 10.1038/ncb1637
  37. Mori N, Stein R, Sigmund O, Anderson DJ. A cell type-preferred silencer element that controls the neural-specific expression of the SCG10 gene. Neuron. 1990;4(4):583–594. doi: 10.1016/0896-6273(90)90116-w
  38. Li L, He S, Sun JM, Davie JR. Gene regulation by Sp1 and Sp3. Biochem Cell Biol. 2004;82(4):460–471. doi: 10.1139/o04-045
  39. Srinivasan L, Atchison ML. YY1 DNA binding and PcG recruitment requires CtBP. Genes Dev. 2004;18(21):2596–2601. doi: 10.1101/gad.1228204
  40. Tiwari VK, McGarvey KM, Licchesi JD, et al. PcG Proteins, DNA methylation, and gene repression by chromatin looping. PLoS Biol. 2008;6(12):e306. doi: 10.1371/journal.pbio.0060306
  41. Segert JA, Gisselbrecht SS. Bulyk ML. Transcriptional silencers: driving gene expression with the brakes on. Trends Genet. 2021;37(6):514–527. doi: 10.1016/j.tig.2021.02.002
  42. Andersson R, Gebhard C, Miguel-Escalada I, et al. An atlas of active enhancers across human cell types and tissues. Nature. 2014;507(7493):455–461. doi: 10.1038/nature12787
  43. Bernstein BE, Stamatoyannopoulos JA, Costello JF, et al. The NIH roadmap epigenomics mapping consortium. Nat Biotechnol. 2010;28(10):1045–1048. doi: 10.1038/nbt1010-1045
  44. ENCODE Project Consortium; Birney E, Stamatoyannopoulos JA, Dutta A, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007;447(7146):799–816. doi: 10.1038/nature05874
  45. FANTOM Consortium and the RIKEN PMI and CLST (DGT); Forrest AR, Kawaji H, Rehli M, et al. A promoter-level mammalian expression atlas. Nature. 2014;507(7493):462–470. doi: 10.1038/nature13182
  46. Kellis M, Wold B, Snyder MP, et al. Defining functional DNA elements in the human genome. Proc Natl Acad Sci USA. 2014;111(17):6131–6138. doi: 10.1073/pnas.1318948111
  47. Roadmap Epigenomics Consortium; Kundaje A, Meuleman W, Ernst J, et al. Integrative analysis of 111 reference human epigenomes. Nature. 2015;518(7539):317–330. doi: 10.1038/nature14248
  48. Bernstein BE, Kamal M, Lindblad-Toh K, et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell. 2005;120(2):169–181. doi: 10.1016/j.cell.2005.01.001
  49. Spicuglia S, Vanhille L. Chromatin signatures of active enhancers. Nucleus. 2012;3(2):126–131. doi: 10.4161/nucl.19232
  50. Visel A, Blow MJ, Li Z, et al. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature. 2009;457(7231): 854–858. doi: 10.1038/nature07730
  51. Rada-Iglesias A, Bajpai R, Swigut T, et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature. 2011;470(7333):279–283. doi: 10.1038/nature09692
  52. Whyte WA, Orlando DA, Hnisz D, et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 2013;153(2):307–319. doi: 10.1016/j.cell.2013.03.035
  53. Barski A, Cuddapah S, Cui K, et al. High-resolution profiling of histone methylations in the human genome. Cell. 2007; 129(4):823–837. doi: 10.1016/j.cell.2007.05.009
  54. Pang B, Snyder MP. Systematic identification of silencers in human cells. Nat Genet. 2020;52(3):254–263. doi: 10.1038/s41588-020-0578-5
  55. Dixon JR, Jung I, Selvaraj S, et al. Chromatin architecture reorganization during stem cell differentiation. Nature. 2015; 518(7539):331–336. doi: 10.1038/nature14222
  56. Nora EP, Goloborodko A, Valton AL, et al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell. 2017;169(5): 930–944.e22. doi: 10.1016/j.cell.2017.05.004
  57. Rao SS, Huang SC, Glenn St Hilaire B, et al. Cohesin loss eliminates all loop domains. Cell. 2017;171(2):305–320.e24. doi: 10.1016/j.cell.2017.09.026
  58. Johnson DS, Mortazavi A, Myers RM, Wold B. Genome-wide mapping of in vivo protein-DNA interactions. Science. 2007; 316(5830):1497–1502. doi: 10.1126/science.1141319
  59. Rhee HS, Pugh BF. Comprehensive genome-wide protein-DNA interactions detected at single-nucleotide resolution. Cell. 2011;147(6):1408–1419. doi: 10.1016/j.cell.2011.11.013
  60. John S, Sabo PJ, Thurman RE, et al. Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat Genet. 2011;43(3):264–268. doi: 10.1038/ng.759
  61. Doni Jayavelu N, Jajodia A, Mishra A, Hawkins RD. Candidate silencer elements for the human and mouse genomes. Nat Commun. 2020;11(1):1061. doi: 10.1038/s41467-020-14853-5
  62. Xu B, Wang H, Wright S, et al. Acute depletion of CTCF rewires genome-wide chromatin accessibility. Genome Biol. 2021;22(1):244. doi: 10.1186/s13059-021-02466-0
  63. Song L, Zhang Z, Grasfeder LL, et al. Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. Genome Res. 2011;21(10):1757–1767. doi: 10.1101/gr.121541.111
  64. Valouev A, Johnson SM, Boyd SD, et al. Determinants of nucleosome organization in primary human cells. Nature. 2011; 474(7352):516–520. doi: 10.1038/nature10002
  65. Song L, Crawford GE. DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harb Protoc. 2010; 2010(2):pdb.prot5384. doi: 10.1101/pdb.prot5384
  66. Pajoro A, Muiño JM, Angenent GC, Kaufmann K. Profiling nucleosome occupancy by MNase-seq: experimental protocol and computational analysis. Methods Mol Biol. 2018;1675: 167–181. doi: 10.1007/978-1-4939-7318-7_11
  67. Buenrostro JD, Giresi PG, Zaba LC, et al. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods. 2013;10(12):1213–1218. doi: 10.1038/nmeth.2688
  68. Giresi PG, Kim J, McDaniell RM, et al. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res. 2007; 17(6):877–885. doi: 10.1101/gr.5533506
  69. Lu L, Liu X, Huang WK, et al. Robust Hi-C maps of enhancer-promoter interactions reveal the function of non-coding genome in neural development and diseases. Mol Cell. 2020;79(3): 521–534.e15. doi: 10.1016/j.molcel.2020.06.007
  70. Ngan CY, Wong CH, Tjong H, et al. Chromatin interaction analyses elucidate the roles of PRC2-bound silencers in mouse development. Nat Genet. 2020;52(3):264–272. doi: 10.1038/s41588-020-0581-x
  71. Sun F, Chronis C, Kronenberg M, et al. Promoter-enhancer communication occurs primarily within insulated neighborhoods. Mol Cell. 2019;73(2):250–263.e5. doi: 10.1016/j.molcel.2018.10.039
  72. Li Z, McGinn O, Wu Y, et al. ESR1 mutant breast cancers show elevated basal cytokeratins and immune activation. Nat Commun. 2022;13(1):2011. doi: 10.1038/s41467-022-29498-9
  73. Lieberman-Aiden E, van Berkum NL, Williams L, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326(5950): 289–293. doi: 10.1126/science.1181369
  74. Fullwood MJ, Ruan Y. ChIP-based methods for the identification of long-range chromatin interactions. J Cell Biochem. 2009; 107(1):30–39. doi: 10.1002/jcb.22116
  75. Mumbach MR, Rubin AJ, Flynn RA, et al. HiChIP: Efficient and sensitive analysis of protein-directed genome architecture. Nat Methods. 2016;13(11):919–922. doi: 10.1038/nmeth.3999
  76. Fang R, Yu M, Li G, et al. Mapping of long-range chromatin interactions by proximity ligation-assisted ChIP-seq. Cell Res. 2016;26(12):1345–1348. doi: 10.1038/cr.2016.137
  77. Banerji J, Rusconi S, Schaffner W. Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences. Cell. 1981;27(2 Pt 1):299–308. doi: 10.1016/0092-8674(81)90413-x
  78. Kvon EZ, Kazmar T, Stampfel G, et al. Genome-scale functional characterization of Drosophila developmental enhancers in vivo. Nature. 2014;512(7512):91–95. doi: 10.1038/nature13395
  79. Patwardhan RP, Lee C, Litvin O, et al. High-resolution analysis of DNA regulatory elements by synthetic saturation mutagenesis. Nat Biotechnol. 2009;27(12):1173–1175. doi: 10.1038/nbt.1589
  80. Patwardhan RP, Hiatt JB, Witten DM, et al. Massively parallel functional dissection of mammalian enhancers in vivo. Nat Biotechnol. 2012;30(3):265–270. doi: 10.1038/nbt.2136
  81. Melnikov A, Murugan A, Zhang X, et al. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nat Biotechnol. 2012;30(3): 271–277. doi: 10.1038/nbt.2137
  82. Kwasnieski JC, Mogno I, Myers CA, et al. Complex effects of nucleotide variants in a mammalian cis-regulatory element. Proc Natl Acad Sci USA. 2012;109(47):19498–19503. doi: 10.1073/pnas.1210678109
  83. McAfee JC, Bell JL, Krupa O, et al. Focus on your locus with a massively parallel reporter assay. J Neurodev Disord. 2022; 14(1):50. doi: 10.1186/s11689-022-09461-x
  84. Kheradpour P, Ernst J, Melnikov A, et al. Systematic dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel reporter assay. Genome Res. 2013;23(5): 800–811. doi: 10.1101/gr.144899.112
  85. Kwasnieski JC, Fiore C, Chaudhari HG, Cohen BA. High-throughput functional testing of ENCODE segmentation predictions. Genome Res. 2014;24(10):1595–1602. doi: 10.1101/gr.173518.114
  86. Arnold CD, Gerlach D, Stelzer C, et al. Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science. 2013; 339(6123):1074–1077. doi: 10.1126/science.1232542
  87. Nguyen TA, Jones RD, Snavely AR, et al. High-throughput functional comparison of promoter and enhancer activities. Genome Res. 2016;26(8):1023–1033. doi: 10.1101/gr.204834.116
  88. Hansen TJ, Hodges E. ATAC-STARR-seq reveals transcription factor-bound activators and silencers within chromatin-accessible regions of the human genome. Genome Res. 2022; 32(8):1529–1541. doi: 10.1101/gr.276766.122
  89. Pang B, Neijssen J, Qiao X, et al. Direct antigen presentation and gap junction mediated cross-presentation during apoptosis. J Immunol. 2009;183(2):1083–1090. doi: 10.4049/jimmunol.0900861
  90. Straathof KC, Pulè MA, Yotnda P, et al. An inducible caspase 9 safety switch for T-cell therapy. Blood. 2005;105(11):4247–4254. doi: 10.1182/blood-2004-11-4564
  91. Bergman DT, Jones TR, Liu V, et al. Compatibility rules of human enhancer and promoter sequences. Nature. 2022;607(7917): 176–184. doi: 10.1038/s41586-022-04877-w
  92. Davis JE, Insigne KD, Jones EM, et al. Dissection of c-AMP response element architecture by using genomic and episomal massively parallel reporter assays. Cell Syst. 2020;11(1):75–85.e7. doi: 10.1016/j.cels.2020.05.011
  93. Ribeiro-dos-Santos AM, Hogan MS, Luther RD, et al. Genomic context sensitivity of insulator function. Genome Res. 2022; 32(3):425–436. doi: 10.1101/gr.276449.121
  94. Rosenberg AB, Patwardhan RP, Shendure J, Seelig G. Learning the sequence determinants of alternative splicing from millions of random sequences. Cell. 2015;163(3):698–711. doi: 10.1016/j.cell.2015.09.054
  95. Cheung R, Insigne KD, Yao D, et al. A multiplexed assay for exon recognition reveals that an unappreciated fraction of rare genetic variants cause large-effect splicing disruptions. Mol Cell. 2019;73(1):183–194.e8. doi: 10.1016/j.molcel.2018.10.037
  96. Mikl M, Hamburg A, Pilpel Y, Segal E. Dissecting splicing decisions and cell-to-cell variability with designed sequence libraries. Nat Commun. 2019;10(1):4572. doi: 10.1038/s41467-019-12642-3
  97. Matreyek KA, Starita LM, Stephany JJ, et al. Multiplex assessment of protein variant abundance by massively parallel sequencing. Nat Genet. 2018;50(6):874–882. doi: 10.1038/s41588-018-0122-z
  98. Sample PJ, Wang B, Reid DW, et al. Human 5' UTR design and variant effect prediction from a massively parallel translation assay. Nat Biotechnol. 2019;37(7):803–809. doi: 10.1038/s41587-019-0164-5
  99. Vainberg Slutskin I, Weinberger A, Segal E. Sequence determinants of polyadenylation-mediated regulation. Genome Res. 2019;29(10):1635–1647. doi: 10.1101/gr.247312.118
  100. Safra M, Nir R, Farouq D, et al. TRUB1 is the predominant pseudouridine synthase acting on mammalian mRNA via a predictable and conserved code. Genome Res. 2017;27(3): 393–406. doi: 10.1101/gr.207613.116
  101. Mulvey B, Lagunas T, Dougherty JD. Massively parallel reporter assays: defining functional psychiatric genetic variants across biological contexts. Biol Psych. 2021;89(1): 6–89. doi: 10.1016/j.biopsych.2020.06.011
  102. Zopf CJ, Quinn K, Zeidman J, Maheshri N. Cell-cycle dependence of transcription dominates noise in gene expression. PLoS Comput Biol. 2013;9(7):e1003161. doi: 10.1371/journal.pcbi.1003161
  103. Akita H, Ito R. Kamiya H, et al. Cell cycle dependent transcription, a determinant factor of heterogeneity in cationic lipid-mediated transgene expression. J Gene Med. 2007;9(3):197–207. doi: 10.1002/jgm.1010
  104. Cooper LJ, Topp MS, Pinzon C, et al. Enhanced transgene expression in quiescent and activated human CD8 + T cells. Human Gene Therapy. 2004;15(7):648–658. doi: 10.1089/1043034041361217
  105. Brightwell G, Poirier V, Cole E, et al. Serum-dependent and cell cycle-dependent expression from a cytomegalovirus-based mammalian expression vector. Gene. 1997;194(1): 115–123. doi: 10.1016/s0378-1119(97)00178-9
  106. Dutton RL, Scharer J, Moo-Young M. Cell cycle phase dependent productivity of a recombinant Chinese hamster ovary cell line. Cytotechnology. 2006;52(1):55–69. doi: 10.1007/s10616-006-9041-4
  107. Burns WR, Zheng Z, Rosenberg SA, Morgan RA. Lack of specific γ-retroviral vector long terminal repeat promoter silencing in patients receiving genetically engineered lymphocytes and activation upon lymphocyte restimulation. Blood. 2009; 114(14):2888–2899. doi: 10.1182/blood-2009-01-199216
  108. Rosenqvist N, Segerstad C, Samuelsson C, et al. Activation of silenced transgene expression in neural precursor cell lines by inhibitors of histone deacetylation. J Gene Med. 2002; 4(3):248–257. doi: 10.1002/jgm.268
  109. Kim M, O’Callaghan PM, Droms KA, James DC. A mechanistic understanding of production instability in CHO cell lines expressing recombinant monoclonal antibodies. Biotechnol Bioeng. 2011;108(10):2434–2446. doi: 10.1002/bit.23189
  110. Brooks AR, Harkins RN, Wang P, et al. Transcriptional silencing is associated with extensive methylation of the CMV promoter following adenoviral gene delivery to muscle. J Gene Med. 2004;6(4):395–404. doi: 10.1002/jgm.516
  111. Laker C, Meyer J, Schopen A, et al. Host cis-mediated extinction of a retrovirus permissive for expression in embryonal stem cells during differentiation. J Virol. 1998;72(1):339–348. doi: 10.1128/JVI.72.1.339-348.1998
  112. Yao S, Sukonnik T, Kean T, et al. Retrovirus silencing, variegation, extinction, and memory are controlled by a dynamic interplay of multiple epigenetic modifications. Mol Ther. 2004;10(1):27–36. doi: 10.1016/j.ymthe.2004.04.007
  113. Cranston A, Dong C, Howcroft J, Clark AJ. Chromosomal sequences flanking an efficiently expressed transgene dramatically enhance its expression. Gene. 2001;269(1–2): 217–225. doi: 10.1016/s0378-1119(01)00459-0
  114. Tripathi NK, Shrivastava A. Recent developments in bioprocessing of recombinant proteins: expression hosts and process development. Front Bioeng Biotechnol. 2019;7:420. doi: 10.3389/fbioe.2019.00420
  115. Nair RR, Blankvoort S, Lagartos MJ, Kentros C. Enhancer-driven gene expression (edge) enables the generation of viral vectors specific to neuronal subtypes. Science. 2020;23(3): 100888. doi: 10.1016/j.isci.2020.100888
  116. Gruh I, Wunderlich S, Winkler M, et al. Human CMV immediate-early enhancer: a useful tool to enhance cell-type-specific expression from lentiviral vectors. J Gene Med. 2008;10(1): 21–32. doi: 10.1002/jgm.1122
  117. Montaño-Samaniego M, Bravo-Estupiñan DM, Méndez-Guerrero O, et al. Strategies for targeting gene therapy in cancer cells with tumor-specific promoters. Front Oncol. 2020;10:605380. doi: 10.3389/fonc.2020.605380
  118. Sano KI, Maeda K, Oki M, Maéda Y. Enhancement of protein expression in insect cells by a lobster tropomyosin cDNA leader sequence. FEBS Lett. 2002;532(1–2):143–146. doi: 10.1016/s0014-5793(02)03659-1
  119. Eisenhut P, Mebrahtu A, Moradi Barzadd M, et al. Systematic use of synthetic 5'-UTR RNA structures to tune protein translation improves yield and quality of complex proteins in mammalian cell factories. Nucleic Acids Res. 2020;48(20): e119–e119. doi: 10.1093/nar/gkaa847
  120. Peyret H, Brown JK, Lomonossoff GP. Improving plant transient expression through the rational design of synthetic 5' and 3' untranslated regions. Plant Methods. 2019;15(1):108. doi: 10.1186/s13007-019-0494-9
  121. Moritz B, Becker PB, Göpfert U. CMV promoter mutants with a reduced propensity to productivity loss in CHO cells. Sci Rep. 2015;5(1):16952. doi: 10.1038/srep16952
  122. Ho SC, Koh EY, Soo BP, et al. Evaluating the use of a CpG free promoter for long-term recombinant protein expression stability in Chinese hamster ovary cells. BMC Biotechnol. 2016;16(1):71. doi: 10.1186/s12896-016-0300-y
  123. Kim JM, Kim JS, Park DH, et al. Improved recombinant gene expression in CHO cells using matrix attachment regions. J Biotechnol. 2004;107(2):95–105. doi: 10.1016/j.jbiotec.2003.09.015
  124. Phi-Van L, von Kries JP, Ostertag W, Strätling WH. The chicken lysozyme 5’ matrix attachment region increases transcription from a heterologous promoter in heterologous cells and dampens position effects on the expression of transfected genes. Mol Cell Biol. 1990;10(5):2302–2307. doi: 10.1128/mcb.10.5.2302-2307.1990
  125. Grosveld F, van Assendelft GB, Greaves DR, Kollias G. Position-independent, high-level expression of the human β-globin gene in transgenic mice. Cell. 1987;51(6):975–985. doi: 10.1016/0092-8674(87)90584-8
  126. Pikaart MJ, Recillas-Targa F, Felsenfeld G. Loss of transcriptional activity of a transgene is accompanied by DNA methylation and histone deacetylation and is prevented by insulators. Genes Dev.1998;12(18):2852–2862. doi: 10.1101/gad.12.18.2852
  127. Neville JJ, Orlando J, Mann K, et al. Ubiquitous chromatin-opening elements (UCOEs): Applications in biomanufacturing and gene therapy. Biotechnol Adv. 2017;35(5):557–564. doi: 10.1016/j.biotechadv.2017.05.004
  128. Li CL, Xiong D, Stamatoyannopoulos G, Emery DW. Genomic and functional assays demonstrate reduced gammaretroviral vector genotoxicity associated with use of the cHS4 chromatin insulator. Mol Ther. 2009;17(4):716–724. doi: 10.1038/mt.2009.7
  129. Browning D, Trobridge G. Insulators to improve the safety of retroviral vectors for HIV gene therapy. Biomedicines. 2016;4(1):4. doi: 10.3390/biomedicines4010004
  130. Hayashi H, Kubo Y, Izumida M, Matsuyama T. Efficient viral delivery of Cas9 into human safe harbor. Sci Rep. 2020; 10(1):21474. doi: 10.1038/s41598-020-78450-8
  131. Papapetrou EP, Schambach A. Gene insertion into genomic safe harbors for human gene therapy. Mol Ther. 2016;24(4): 678–684. doi: 10.1038/mt.2016.38
  132. Sadelain M, Papapetrou EP, Bushman FD. Safe harbours for the integration of new DNA in the human genome. Nat Rev Canc. 2011;12(1):51–58. doi: 10.1038/nrc3179
  133. Wang W, Guo X, Li Y, et al. Enhanced transgene expression using cis-acting elements combined with the EF1 promoter in a mammalian expression system. Eur J Pharm Sci. 2018; 123:539–545. doi: 10.1016/j.ejps.2018.08.016
  134. Schlabach MR, Hu JK, Li M, Elledge SJ. Synthetic design of strong promoters. Proc Natl Acad Sci USA. 2010;107(6): 2538–2543. doi: 10.1073/pnas.0914803107
  135. Morgan RA, Ma F, Unti MJ, et al. Creating new β-globin-expressing lentiviral vectors by high-resolution mapping of locus control region enhancer sequences. Mol Ther Methods Clin Dev. 2020;17:999–1013. doi: 10.1016/j.omtm.2020.04.006
  136. Vaknin I, Amit R. Molecular and experimental tools to design synthetic enhancers. Curr Opin Biotechnol. 2022;76:102728. doi: 10.1016/j.copbio.2022.102728
  137. Wu MR, Nissim L, Stupp D, et al. A high-throughput screening and computation platform for identifying synthetic promoters with enhanced cell-state specificity (SPECS). Nat Commun. 2019;10(1):2880. doi: 10.1038/s41467-019-10912-8
  138. Yu TC, Liu WL, Brinck MS, et al. Multiplexed characterization of rationally designed promoter architectures deconstructs combinatorial logic for IPTG-inducible systems. Nat Commun. 2021;12(1):325. doi: 10.1038/s41467-020-20094-3
  139. Shlyueva D, Stelzer C, Gerlach D, et al. Hormone-responsive enhancer-activity maps reveal predictive motifs, indirect repression, and targeting of closed chromatin. Mol Cell. 2014; 54(1):180–192. doi: 10.1016/j.molcel.2014.02.026
  140. Johnson GD, Barrera A, McDowell IC, et al. Human genome-wide measurement of drug-responsive regulatory activity. Nat Commun. 2018;9(1):5317. doi: 10.1038/s41467-018-07607-x
  141. Pardi N, Hogan MJ, Porter FW. Weissman D. mRNA vaccines--a new era in vaccinology. Nat Rev Drug Dis. 2018;17(4): 261–279. doi: 10.1038/nrd.2017.243
  142. Leppek K, Byeon GW, Kladwang W, et al. Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics. Nat Commun. 2022;13(1):1536. doi: 10.1038/s41467-022-28776-w
  143. Peng T, Zhai Y, Atlasi Y, et al. STARR-seq identifies active, chromatin-masked, and dormant enhancers in pluripotent mouse embryonic stem cells. Genome Biol. 2020;21(1):243. doi: 10.1186/s13059-020-02156-3
  144. Glaser LV, Steiger M, Fuchs A, et al. Assessing genome-wide dynamic changes in enhancer activity during early mESC differentiation by FAIRE-STARR-seq. Nucleic Acids Res. 2021; 49(21):12178–12195. doi: 10.1093/nar/gkab1100
  145. Van Arensbergen J, FitzPatrick VD, de Haas M, et al. Genome-wide mapping of autonomous promoter activity in human cells. Nat Biotechnol. 2017;35(2):145–153. doi: 10.1038/nbt.3754
  146. Maricque BB, Dougherty JD, Cohen BA. A genome-integrated massively parallel reporter assay reveals DNA sequence determinants of cis-regulatory activity in neural cells. Nucleic Acids Res. 2017;45(4):e16. doi: 10.1093/nar/gkw942
  147. Inoue F, Kreimer A, Ashuach T, et al. Identification and massively parallel characterization of regulatory elements driving neural induction. Cell Stem Cell. 2019;25(5):713–727.e10. doi: 10.1016/j.stem.2019.09.010
  148. Dekkers CM. Application of genomics tools to animal breeding. Curr Genom. 2012;13(3):207–212. doi: 10.2174/138920212800543057
  149. Xiao Y, Liu H, Wu L, et al. Genome-wide association studies in maize: praise and stargaze. Mol Plant. 2017;10(3):359–374. doi: 10.1016/j.molp.2016.12.008
  150. Mackay TF, Richards S, Stone EA, et al. The drosophila melanogaster genetic reference panel. Nature. 2012;482(7384): 173–178. doi: 10.1038/nature10811
  151. Husby A, Kawakami T, Rönnegаrd L, et al. Genome-wide association mapping in a wild avian population identifies a link between genetic and phenotypic variation in a life-history trait. Proc Biol Sci. 2015;282(1806):20150156. doi: 10.1098/rspb.2015.0156
  152. Tseng CC, Wong MC, Liao WT, et al. Genetic variants in transcription factor binding sites in humans: triggered by natural selection and triggers of diseases. Int J Mol Sci. 2021; 22(8):4187. doi: 10.3390/ijms22084187
  153. Jung S, Liu W, Baek J, et al. Expression quantitative trait loci (eQTL) mapping in korean patients with crohn’s disease and identification of potential causal genes through integration with disease associations. Front Genet. 2020;11:486. doi: 10.3389/fgene.2020.00486
  154. Alsheikh AJ, Wollenhaupt S, King EA, et al. The landscape of GWAS validation; systematic review identifying 309 validated non-coding variants across 130 human diseases. BMC Med Genomics. 2022;15(1):74. doi: 10.1186/s12920-022-01216-w
  155. Klein JC, Keith A, Rice SJ, et al. Functional testing of thousands of osteoarthritis-associated variants for regulatory activity. Nat Commun. 2019;10(1):2434. doi: 10.1038/s41467-019-10439-y
  156. Myint L, Wang R, Boukas L, et al. A screen of 1,049 schizophrenia and 30 Alzheimer’s‐associated variants for regulatory potential. Am J Med Genet B Neuropsychiatr Genet. 2020; 183(1):61–73. doi: 10.1002/ajmg.b.32761
  157. Cooper YA, Teyssier N, Dräger NM, et al. Functional regulatory variants implicate distinct transcriptional networks in dementia. Science. 2022;377(6608):eabi8654. doi: 10.1126/science.abi8654
  158. Choi J, Zhang T, Vu A, et al. Massively parallel reporter assays of melanoma risk variants identify MX2 as a gene promoting melanoma. Nat Commun. 2020;11(1):2718. doi: 10.1038/s41467-020-16590-1
  159. McAfee JC, Lee S, Lee J, et al. Systematic investigation of allelic regulatory activity of schizophrenia-associated common variants. medRxiv. 2022. Available from: https://www.researchgate.net/scientific-contributions/Jessica-Lee-Bell-2203854579
  160. Slatkin M. Linkage disequilibrium--understanding the evolutionary past and mapping the medical future. Nat Rev Gen. 2008;9(6):477–485. doi: 10.1038/nrg2361
  161. Ulirsch JC, Nandakumar SK, Wang L, et al. Systematic functional dissection of common genetic variation affecting red blood cell traits. Cell. 2016;165(6):1530–1545. doi: 10.1016/j.cell.2016.04.048
  162. Khetan S, Kales S, Kursawe R, et al. Functional characterization of T2D-associated SNP effects on baseline and ER stress-responsive β-cell transcriptional activation. Nat Commun. 2021;12(1):5242. doi: 10.1038/s41467-021-25514-6
  163. Dietrich P, Dragatsis I. Familial dysautonomia: mechanisms and models. Genet Mol Biol. 2016;39(4):497–514. doi: 10.1590/1678-4685-GMB-2015-0335
  164. Fujimoto A, Furuta M, Totoki Y, et al. Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer. Nat Genet. 2016;48(5):500–509. doi: 10.1038/ng.3547
  165. Rheinbay E, Nielsen MM, Abascal F, et al. Analyses of non-coding somatic drivers in 2,658 cancer whole genomes. Nature. 2020;578(7793):102–111. doi: 10.1038/s41586-020-1969-6
  166. Lim Y, Arora S, Schuster SL, et al. Multiplexed functional genomic analysis of 5’ untranslated region mutations across the spectrum of prostate cancer. Nat Commun. 2021;12(1):4217. doi: 10.1038/s41467-021-24445-6
  167. Lagunas T, Plassmyer S, Friedman R, et al. A cre-dependent massively parallel reporter assay allows for cell-type specific assessment of the functional effects of genetic variants in vivo. bioRxiv. 2021. doi: 10.1101/2021.05.17.444514
  168. Griesemer D, Xue JR, Reilly SK, et al. Genome-wide functional screen of 3'UTR variants uncovers causal variants for human disease and evolution. Cell. 2021;184(20):5247–5260.e19. doi: 10.1016/j.cell.2021.08.025

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Strategies for massively parallel reporter assay: а — Principle of MPRA. Initially, a set of selected CREs is cloned into a pool of reporter constructs, each carrying a unique barcode. After transformation, RNA is extracted from the cells, and barcodes in the reporter transcripts is used as a measure of CRE activity; б — Schematic of the ReSE method for high-throughput detection of silencers (see explanations in the text); в — To study the post-transcriptional regulation of genes, the 5' or 3'- untranslated region (UTR) sequences or a transcription terminator with a polyadenylation signal are placed in the barcoded (BC) reporter construct. To investigate splicing, variants of introns flanked by different splice sites are placed in the barcoded construct. Disruption of splicing is accompanied by a shift in the content of the reporter proteins in the cells (GFP and mCherry). Next, cells can be categorized into groups based on the level of reporter protein activity, and barcode enrichment in each group can be analyzed.

Download (1MB)
3. Fig. 2. Massively parallel reporter assays (MPRA) allow to confirms causative variants among the multiple candidates identified using GWAS (locus on the left). At the same time, causal mutations are often found within haplotypes containing multiple closely spaced polymorphisms (locus on the right). At such loci, GWAS is unable to identify the causal genetic variants, so the mechanism of disease development remains unclear. MPRA makes it possible to find polymorphisms in the haplotypes that disrupt gene regulation and identify the molecular basis of disease formation.

Download (1MB)

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies