Possibilities of modern neuroimaging techniques in the diagnostics and neuromonitoring of the recovery process in patients after ischemic stroke

Cover Page

Cite item

Full Text

Abstract

Ischemic stroke is still leading in terms of primary disability caused by residual neurologic de-fect in the majority of patients. Persistent motor disorders are observed even after timely and ade-quately carried out rehabilitation measures. The article discusses the possibilities of modern instru-mental technologies for diagnostics and further monitoring of the process of restoration of post-stroke deficit, which is based on the phenomenon of neuroplasticity.

About the authors

E. V. Ekusheva

Institute of Advanced Training of the FMBA of Russia

Author for correspondence.
Email: ekushevaev@mail.ru

д.м.н., профессор кафедры нервных болезней

Russian Federation, Moscow

E. S. Kiparisova

Institute of Advanced Training of the FMBA of Russia

Email: kiparisova-es@yandex.ru

д.м.н., профессор кафедры нервных болезней

Russian Federation, Moscow

O. O. Kurzanceva

Institute of Advanced Training of the FMBA of Russia

Email: olgakurzan@yandex.ru

к.м.н., доцент кафедры лучевой диагностики и маммологии

Russian Federation, Moscow

O. A. Smirnova

Institute of Advanced Training of the FMBA of Russia

Email: olgakurzan@yandex.ru

заведующая учебной частью кафедры лучевой диагностики и маммологии

Russian Federation, Moscow

References

  1. Бархатов Ю.Д., Кадыков А.С. Прогностические факторы восстановления нарушенных в результате ишемического инсульта двигательных функций // Анналы клинической и экспериментальной неврологии. 2017. № 11(1). С. 80–89.
  2. Дамулин И.В., Екушева Е.В. Деменция вследствие поражения мелких церебральных сосудов: патогенез, клиника, лечение // Неврология, нейропсихиатрия, психосоматика. 2014. № 4. С. 94–100.
  3. Дамулин И.В., Екушева Е.В. Инсульт и нейропластичность // Журнал неврологии и психиатрии имени С.С. Корсакова. 2014. № 114(8). С. 136–142.
  4. Добрынина Л.А. Возможности функциональной и структурной нейровизуализации в изучении восстановления двигательных функций после ишемического инсульта // Анналы клинической и экспериментальной неврологии. 2011. № 5(3). С. 53–56.
  5. Екушева Е.В. Сенсомоторная интеграция при поражении центральной нервной системы: клинические и патогенетические аспекты: Автореф. дисс. ... д-ра мед. наук. М.: РНИМУ им. Н.И. Пирогова, 2016.
  6. Ишемический инсульт и транзиторная ишемическая атака у взрослых: Клинические рекомендации Министерства здравоохранения Российской Федерации. М., 2015.
  7. Пирадов М.А., Танашян М.М., Кротенкова М.В. и др. Передовые технологии нейровизуализации // Анналы клинической и экспериментальной неврологии. 2015. № 9(4). С. 11–17.
  8. Скворцова В.И. Реперфузионная терапия ишемического инсульта // Медицинский консилиум. 2004. № 6(8). С. 610–614.
  9. Труфанов Г.Е. Лучевая диагностика. М.: ГЭОТАР-Медиа, 2011.
  10. Basser P.J., Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI // Journal Magnetic Resonance. 1996. Vol. 111. P. 209–219.
  11. Di Pino G., Pellegrino G., Assenza G. et al. Modulation of brain plasticity in stroke: A novel model for neurorehabilitation // Nature Reviews Neurology. 2014. Vol. 10. No. 10. P. 597–608.
  12. EEG-fMRI. Physiological basis, technique, and applications / Ed. by A. Schmuel. Berlin; Heidelberg: Springer-Verlag, 2010.
  13. Hara Y. Brain plasticity and rehabilitation in stroke // Journal of Nippon Medical School. 2015. Vol. 82. No. 1. P. 4–13.
  14. Jang S.H. The role of the corticospinal tract in motor recovery in patients with a stroke: A review // NeuroRehabilitation. 2009. Vol. 24. No. 3. P. 285–290.
  15. Johansson B.B. Brain plasticity in health and disease // The Keio Journal of Medicine. 2004. Vol. 53. No. 4. P. 231–246.
  16. Lee J.S., Han M.K., Kim S.H. et al. Fiber tracking by diffusion tensor imaging in corticospinal tract stroke: Topographical correlation with clinical symptoms // NeuroImage. 2005. Vol. 26. P. 771–776.
  17. Leukel C., Taube W., Beck S., Schubert M. Pathway-specific plasticity in the human spinal cord // European Journal of Neuroscience. 2012. Vol. 35. No. 10. P. 1622–1629.
  18. McDonnell M., Koblar S., Ward N.S. et al. An investigation of cortical neuroplasticity following stroke in adults: Is there evidence for a critical window for rehabilitation // BMC Neurology. 2015. Vol. 109. No. 15.
  19. Moller A.R. Neural plastisity and disorders of the nervous system. Cambridge: Cambridge University Press, 2006.
  20. Moser E., Meyerspeer M., Fischmeister F. et al. Windows on the human body – in vivo high-field magnetic resonance research and applications in medicine and psychology // Sensors (Basel, Switzerland). 2010. Vol. 10. No. 6. P. 5724–5757.
  21. Murphy T.H., Corbett D. Plasticity during stroke recovery: From synapse to behavior // Nature Reviews Neuroscience. 2009. No. 10. P. 861–872.
  22. Rossini P.M., Burke D., Chen R. et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee // Clinical Neurophysiology. 2015. Vol. 126. No. 6. P. 1071–1107.
  23. Warach S., Dashe J.F., Edelman R.R. Clinical outcome in ischemic stroke predicted by early diffusion weighted and perfusion magnetic resonance imaging: A preliminary analysis // The Journal of Cerebral Blood Flow & Metabolism. 1996. Vol. 16. P. 53–59.
  24. Winnubst J., Cheyne J.E., Niculescu D., Lohmann C. Spontaneous activity drives local synaptic plasticity in vivo // Neuron. 2015. Vol. 87. No. 2. P. 399–410.
  25. Wissel J., Olver J., Stibrant Sunnerhagen K. Navigating the poststroke continuum of care // Journal of Stroke Cerebrovascular Disease. 2013. Vol. 22. No. 1. P. 1.
  26. Zorowitz R., Brainin M. Advances in brain recovery and rehabilitation 2010 // Stroke. 2011. Vol. 42. No. 2. P. 294–297.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Diffusion-weighted MRI of brain A: diffusion-weighted image; B: diffusion color map at this level

Download (899KB)
3. Fig. 2. Diffusion-tensor MRI of the brain (MR-tractography). Image of the pathways of the brain

Download (693KB)
4. Fig. 3. Different modes of MRI of the brain in a patient with ischemic stroke A: T2-image with a standard MRI - no visible changes in the brain substance; B: ischemic focus of increased signal with diffusion-weighted MRI; B: hypoperfusion zone with a map with perfusion MRI exceeds the lesion during diffusion-weighted MRI

Download (615KB)
5. Fig. 4. Functional MRI of the brain. A: the arrow indicates the location of the motor cortex in the precentral gyrus; B: map of functional MRI activity in the precentral gyrus when moving by hand

Download (1004KB)
6. Fig. 5. Positron emission tomography of the brain

Download (1MB)

Copyright (c) 2018 Ekusheva E.V., Kiparisova E.S., Kurzanceva O.O., Smirnova O.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies