CELL THERAPY OF STROKE AND SPINAL CORD INJURY COMPLICATIONS

Cover Page

Cite item

Full Text

Abstract

The review analyzes the current advances of cell therapy for neurological complications of ischemic stroke and spinal cord injury (SCI). We demonstrate the most recent data on the use of different types of stem cells for the treatment of these severe damages, obtained both in experimental studies using animal models and in clinical studies. We particularly discuss the use of mesenchymal stem cells (MSC) and neural stem/progenitor cells (NSC/NPC) for the treatment of stroke and SCI. We also discuss the prospects for a further development of cell therapy of these diseases.

About the authors

M A Konoplyannikov

ФНКЦ ФМБА России

Email: mkonopl@mail.ru
зав. лабораторией клеточных технологий ФНКЦ ФМБА России

V P Baklaushev

ФНКЦ ФМБА России

Email: serpoff@mail.ru
д.м.н., заместитель генерального директора по научной работе и медицинским технологиям ФГБУ ФНКЦ ФМБА России; доцент кафедры медицинских нанобиотехнологий МБФ РНИМУ им. Н.И. Пирогова

V A Kalsin

ФНКЦ ФМБА России

научный сотрудник лаборатории клеточных технологий ФНКЦ ФМБА России

M A Tikhonovsky

ФНКЦ ФМБА России

научный сотрудник группы нейрореабилитации отдела реабилитации и спортивной травмы ФНКЦ ФМБА России

A V Averyanov

ФНКЦ ФМБА России

Email: averyanovav@mail.ru
зав. отделением пульмонологии ФНКЦ ФМБА России, Руководитель Центра биомедицинских технологий ФНКЦ ФМБА России

References

  1. Stein J., Harvey R., Winstein C., Zorowitz R., Wittenberg G. Stroke Recovery and Rehabilitation, 2nd Edition. Demos Medical Publishing, New York, 2014, 3229 pp.
  2. Hess D.C. (ed.), Cell Therapy for Brain Injury. Springer International Publishing Switzerland, 2015, 364 pp.
  3. Fehlings MG, Wilson JR, O’Higgins M (2012) Introduction: Spinal cord injury at the cutting edge of clinical translation: a focus issue collaboration between NACTN and AO Spine North America. J Neurosurg Spine 17: 1-3.
  4. Alvarez-Buylla, A., and Garcia-Verdugo, J. M. (2002). Neurogenesis in adult subventricular zone. J. Neurosci. 22, 629-634.
  5. Liu, J., Solway, K., Messing, R. O., and Doetsch, F., Garca-Verdugo, J. M., and Alvarez-Buylla, A. (1997). Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J. Neurosci. 17, 5046-5061.
  6. Sharp, F. R. (1998). Increased neurogenesis in the dentate gyrus after transient global ischemia in gerbils. J. Neurosci. 18, 7768-7778.
  7. Parent, J. M. (2003). Injury-induced neurogenesis in the adult mammalian brain. Neuroscientist 9, 261-272.
  8. Blum, B., and Benvenisty, N. (2008). The tumorigenicity of human embryonic stem cells. Adv. Cancer Res. 100, 133-158.
  9. Bacigaluppi, M., Pluchino, S., Martino, G., Kilic, E., and Hermann, D. M. (2008). Neural stem/precursor cells for the treatment of ischemic stroke. J. Neurol. Sci. 265, 73-77.
  10. Doeppner, T. R., Ewert, T. A., Tnges, L., Herz, J., Zechariah, A., Elali, A., et al. (2012). Transduction of neural precursor cells with TAT-heat shock protein 70 chaperone: therapeutic potential against ischemic stroke after intrastriatal and systemic transplantation. Stem Cells 30, 1297-1310.
  11. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement. Cytotherapy 8, 315-317.
  12. Doeppner, T. R., and Hermann, D. M. (2010). Mesenchymal stem cells in the treatment of ischemic stroke: progress and possibilities. Stem Cells Cloning 3, 157-163.
  13. Aggarwal, S., and Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105, 1815-1822.
  14. Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284, 143-147.
  15. Caplan, A. I. (2009). Why are MSCs therapeutic? New data: new insight. J. Pathol. 217, 318-324.
  16. Bang, O. Y., Lee, J. S., Lee, P. H., and Lee, G. (2005). Autologous mesenchymal stem cell transplantation in stroke patients. Ann. Neurol. 57, 874-882.
  17. Spees, J. L., Gregory, C. A., Singh, H., Tucker, H. A., Peister, A., Lynch, P. J., et al. (2004). Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy. Mol. Ther. 9, 747-756.
  18. Lee, J. S., Hong, J. M., Moon, G. J., Lee, P. H., Ahn, Y.H., Bang, O. Y., et al. (2010). A long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells 28, 1099-1106.
  19. Shen, L. H., Li, Y., Chen, J., Zacharek, A., Gao, Q., Kapke, A., et al. (2007). Therapeutic benefit of bone marrow stromal cells administered 1 month after stroke. J. Cereb. Blood Flow Metab. 27, 6-13.
  20. Delavaran, H., Sjunnesson, H., Arvidsson, A., Lindvall, O., Norrving, B., van Westen, D., et al. (2013). Proximity of brain infarcts to regions of endogenous neurogenesis and involvement of striatum in ischaemic stroke. Eur. J. Neurol. 20, 473-479.
  21. Bhasin, A., Srivastava, M. V., Kumaran, S. S., Mohanty, S., Bhatia, R., Bose, S., et al. (2011). Autologous mesenchymal stem cells in chronic stroke. Cerebrovasc. Dis. Extra 1, 93-104.
  22. Savitz, S. I., Misra, V., Kasam, M., Juneja, H., Cox, C. S. Jr., Alderman, S., et al. (2011). Intravenous autologous bone marrow mononuclear cells for ischemic stroke. Ann. Neurol. 70, 59-69.
  23. Barbosa da Fonseca, L. M., Gutfilen, B., Rosado de Castro, P. H., Battistella, V., Goldenberg, R. C., Kasai-Brunswick, T., et al. (2010). Migration and homing of bone-marrow mononuclear cells in chronic ischemic stroke after intra-arterial injection. Exp. Neurol. 221, 122-128.
  24. Battistella, V., de Freitas, G. R., da Fonseca, L. M., Mercante, D., Gutfilen, B., Goldenberg, R. C., et al. (2011). Safety of autologous bone marrow mononuclear cell transplantation in patients with nonacute ischemic stroke. Regen. Med. 6, 45-52.
  25. Moniche, F., Gonzalez, A., Gonzalez-Marcos, J. R., Carmona, M., Piero, P., Espigado, I., et al. (2012). Intra-arterial bone marrow mononuclear cells in ischemic stroke: a pilot clinical trial. Stroke 43, 2242-2244.
  26. Yang, B., Migliati, E., Parsha, K., Schaar, K., Xi, X., Aronowski, J., et al. (2013). Intra-arterial delivery is not superior to intravenous delivery of autologous bone marrow mononuclear cells in acute ischemic stroke. Stroke 44, 3463-3472.
  27. Surez-Monteagudo, C., Hernndez-Ramrez, P., Alvarez-Gonzlez, L., Garca-Maeso,, et al. (2009). Autologous bone marrow stem cell neurotransplantation in stroke patients. Restor. Neurol. Neurosci. 27, 151-161.
  28. Kondziolka, D., Wechsler, L., Goldstein, S., Meltzer, C., Thulborn, K. R., Gebel, J., et al. (2000). Transplantation of cultured human neuronal cells for patients with stroke. Neurology 55, 565-569.
  29. Kondziolka, D., Steinberg, G. K., Wechsler, L., Meltzer, C. C., Elder, E., Gebel, J., et al. (2005). Neurotransplantation for patients with subcortical motor stroke: a phase 2 randomized trial. J. Neurosurg. 103, 38-45.
  30. Savitz, S. I., Dinsmore, J., Wu, J., Henderson, G. V., Stieg, P., and Caplan, L. R. (2005). Neurotransplantation of fetal porcine cells in patients with basal ganglia infarcts: a preliminary safety and feasibility study. Cerebrovasc. Dis. 20, 101-107.
  31. Rabinovich, S. S., Seledtsov, V. I., Banul, N. V.,Poveshchenko, O. V., Senyukov, V. V., Astrakov, S.V., et al. (2005). Cell therapy of brain stroke. Bull. Exp. Biol. Med. 139, 126-128.
  32. Harrop JS, Hashimoto R, Norvell D, Raich A, et al. (2012) Evaluation of clinical experience using cell- based therapies in patients with spinal cord injury: a systematic review. J Neurosurg Spine 17: 230-246.
  33. Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, et al. (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164: 247-256.
  34. Song S, Song S, Zhang H, Cuevas J, Sanchez- Ramos J (2007) Comparison of neuron-like cells derived from bone marrow stem cells to those differentiated from adult brain neural stem cells. Stem Cells Dev 16: 747-756.
  35. Hofstetter CP, Schwarz EJ, Hess D, Widenfalk J, El Manira A, et al. (2002) Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc Natl Acad Sci U S A 99: 2199-2204.
  36. Krabbe C, Zimmer J, Meyer M (2005) Neural transdifferentiation of mesenchymal stem cells - a critical review. APMIS 113: 831-844.
  37. Phinney DG, Prockop DJ (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair-current views. Stem Cells 25: 2896-2902.
  38. Chernykh ER, Stupak VV, Muradov GM, Sizikov MY, Shevela EY, et al. (2007) Application of autologous bone marrow stem cells in the therapy of spinal cord injury patients. Bull Exp Biol Med 143: 543-547.
  39. Dai G, Liu X, Zhang Z, Yang Z, Dai Y, et al. (2013) Transplantation of autologous bone marrow mesenchymal stem cells in the treatment of complete and chronic cervical spinal cord injury. Brain Res 1533: 73-79.
  40. Jang YO, Kim YJ, Baik SK, Kim MY, Eom YW, et al. (2014) Histological improvement following administration of autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: a pilot study. Liver Int 34: 33-41.
  41. Kishk NA, Gabr H, Hamdy S, Afifi L, Abokresha N, et al. (2010) Case control series of intrathecal autologous bone marrow mesenchymal stem cell therapy for chronic spinal cord injury. Neurorehabil Neural Repair 24: 702-708.
  42. Yoon SH, Shim YS, Park YH, Chung JK, Nam JH, et al. (2007) Complete spinal cord injury treatment using autologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: Phase I/II clinical trial. Stem Cells 25: 2066-2073.
  43. Cristante AF, Barros-Filho TE, Tatsui N, Mendrone A, Caldas JG, et al. (2009) Stem cells in the treatment of chronic spinal cord injury: evaluation of somatosensitive evoked potentials in 39 patients. Spinal Cord 47: 733-738.
  44. Chhabra HS, Lima C, Sachdeva S, Mittal A, Nigam V, et al. (2009) Autologous olfactory [corrected] mucosal transplant in chronic spinal cord injury: an Indian Pilot Study. Spinal Cord 47: 887-895.
  45. Lima C, Escada P, Pratas-Vital J, Branco C, Arcangeli CA, et al. (2010) Olfactory mucosal autografts and rehabilitation for chronic traumatic spinal cord injury. Neurorehabil Neural Repair 24: 10-22.
  46. Palmer, T. D., Markakis, E. A., Willhoite, A. R., Safar, F., & Gage, F. H. (1999). Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS. Journal of Neuroscience, 19 (19), 8487-8497.
  47. Weiss, S., Dunne, C., Hewson, J., Wohl, C., Wheatley, M., Peterson, A. C., et al. (1996). Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. Journal of Neuro- science, 16 (23), 7599-7609.
  48. Roy, N. S., Wang, S., Jiang, L., Kang, J., Benraiss, A., Harrison-Restelli, C., et al. (2000). In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nature Medicine, 6 (3), 271-277.
  49. Wachs, F. P., Couillard-Despres, S., Engelhardt, M., Wilhelm, D., Ploetz, S., Vroemen, M., et al. (2003). High efficacy of clonal growth and expansion of adult neural stem cells. Laboratory Investigation, 83 (7), 949- 962.
  50. Gritti, A., Parati, E. A., Cova, L., Frolichsthal, P., Galli, R., Wanke, E., et al. (1996). Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. Journal of Neuroscience, 16 (3), 1091-1100.
  51. Johansson, C. B., Svensson, M., Wallstedt, L., Janson, A. M., & Frisen, J. (1999). Neural stem cells in the adult human brain. Experimental Cell Research, 253 (2), 733-736.
  52. Reynolds, B. A., & Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science, 255 (5052), 1707-1710.
  53. Tsuji, O., Miura, K., Fujiyoshi, K., Momoshima, S., Nakamura, M., & Okano, H. (2011). Cell therapy for spinal cord injury by neural stem/progenitor cells derived from iPS/ES cells. Neurotherapeutics, 8 (4), 668-676.
  54. Cummings, B. J., Uchida, N., Tamaki, S. J., Salazar, D. L., Hooshmand, M., Summers, R., et al. (2005). Human neural stem cells differentiate and promote locomotor recovery in spinal cord injured mice. Proceedings of the National Academy of Sciences of the United States of America, 102 (39), 14069-14074.
  55. Cummings, B. J., Uchida, N., Tamaki, S. J., & Anderson, A. J. (2006). Human neural stem cell differentiation following transplantation into spinal cord injured mice: Association with recovery of locomotor function. Neurological Research, 28 (5), 474-481.
  56. Hooshmand, M. J., Sontag, C. J., Uchida, N., Tamaki, S., Anderson, A. J., & Cummings, B. J. (2009). Analysis of host-mediated repair mechanisms after human CNS-stem cell transplantation for spinal cord injury: Correlation of engraftment with recovery. PloS One, 4 (6), e5871.
  57. Salazar, D. L., Uchida, N., Hamers, F. P., Cummings, B. J., & Anderson, A. J. (2010). Human neural stem cells differentiate and promote locomotor recovery in an early chronic spinal cord injury NOD-scid mouse model. PloS One, 5 (8), e12272.
  58. Uchida, N., Buck, D. W., He, D., Reitsma, M. J., Masek, M., Phan, T. V., et al. (2000). Direct isolation of human central nervous system stem cells. Proceedings of the National Academy of Sciences of the United States of America, 97 (26), 14720-25.
  59. Van Gorp S, Leerink M, Kakinohana O, Platoshyn O, Santucci C, et al. (2013) Amelioration of motor/sensory dysfunction and spasticity in a rat model of acute lumbar spinal cord injury by human neural stem cell transplantation. Stem Cell Res Ther 4: 57.
  60. Lu P, Wang Y, Graham L, McHale K, Gao M, et al. (2012) Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 150: 1264-73.

Copyright (c) 2015 Konoplyannikov M.A., Baklaushev V.P., Kalsin V.A., Tikhonovsky M.A., Averyanov A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies