SYSTOLIC FUNCTION AND DYSSYNCHRONY IN PATIENTS WITH ACUTE MYOCARDIAL INFARCTION

Cover Page

Cite item

Full Text

Abstract

Echographic evaluation of systolic function plays an important role in examination of the patients with acute myocardial infarction (AMI). Recent developments in real-time 3D echocardiography (RT3DE) allow us to evaluate additional parameters such as the dyssynchrony.The aim of this study was to evaluate the relationship between myocardium dyssynchrony and systolic function and to assess the prognostic value of dyssynchrony and its influence on the development of arrhythmias and fatal event in post AMI period.Methods: Study population consisted of 82 (mean age 52±21) patients with AMI and 65 age and gender matched persons with similar cardiovascular risk factors, but without AMI (control group). Standard deviation of the time to the regional LV minimum systolic volume for all 16 segments Tmsv4 16-SD index was used for the assessment of dyssynchrony. The follow-up period was 6 months afterAMI.Results: Tmsv 16-SD values were significantly higher in patients with MI compared control group (6.8 ± 2.7% vs 2.9 ± 1.6 % respectively, р<0,001). Moderate negative correlation was observed between Tmsv 16-SD and Cardiac Index (CI) (r =-0.58, p<0.008). No significant correlations were found between Tmsv 16-SD and mean arterial pressure and herat rate. Tmsv 16-SD was significantly lower in patients with pulmonary hypertension (maximum systolic pressure in lung artery (SPLA) – 55.0±5.58 mm Hg) as compared to patients without pulmonary hypertension (maximum SPLA – 33.0±5.76 mmHg); 4.9±0.75 vs 6.1±1.88 respectively, р=0.03. Significant positive correlation was observed between Tmsv 16-SD and end-diastolic volume (EDV) (r=0.63; р<0.05) and negative with ejection fraction (EF) (r=-0.73; p<0.05).28 patients (34%) of the MI group had the increase Tmsv 16-SD and normal values of EDV and EF. According to ROC analysis ROC Tmsv 16-SD>6.1 was associated with arrhythmic complications in post IM period (sensitivity 83.3%, specificity 87.5%, AUC=0.865, p<0.0001). Tmsv 16SD>6.1 correlates with increasing likelihood of fatal event (sensitivity 87.5%, specificity 71.6%, AUC=0.81, p<0.0001)Conclusions: Tmsv 16-SD is increased in patients with MI. In 34% of MI patients the increase of Tmsv 16-SD was observed in combination normal values of EF and EDV which allow us to consider Tmsv 16-SD as an additional indicator describing pathological changes in myocardium. Tmsv16-SD is correlated with hemodynamic indicators such as CI and SPLA. High Tmsv 16-SD is associated with increased level of arrhythmic complications and fatal events.

About the authors

N A Yaroschuk

ГБУЗ СО "Городская больница №3", г. Каменск-Уральский, Свердловская область

Email: natalijayaroshchuk@mail.ru
заведующая отделением функциональной диагностики ГБУЗ СО "Городская больница №3", г. Каменск-Уральский

V V Kochmasheva

ГБУЗ СО "Свердловская областная клиническая больница №1", г. Екатеринбург

заведующая отделением функциональной и ультразвуковой диагностики

V P Dityatev

Уральская государственная медицинская академия, г. Екатеринбург

профессор кафедры терапии с курсом кардиологии ФПК и ПП ГОУ ВПО "Уральская государственная медицинская академия", д.м.н.

O B Kerbikov

ФГБУ ФНКЦ ФМБА России

Email: o.kerbikov@gmail.com
старший научный сотрудник ФГБУ "Федеральный научно-клинический центр специализированных видов медицинской помощи и медицинских технологий ФМБА России", к.м.н. Москва, Ореховый бульвар,28

References

  1. Алехин М.Н., Сидоренко Б.А. Современные подходы к эхокардиографической оценке систолической функции сердца. Кардиология. 2007;7: 4 12.
  2. Беленков Ю.Н. Терновой С.К. Функциональная диагностика сердечно-сосудистых заболеваний. М.: ГЭОТАР-Медиа; 2007; с. 355-412.
  3. Corsi C., Lang R.M.,Veronesi F. [et al.] Volumetric quantification of global and regional left ventricular function from real-time three-dimensional echocardiographic images. Circulation. 2005;112:1161-70.
  4. Sugeng L., Mor-Avi V., Lang R.M. Three-dimensional echocardiography: coming оf age. Heart. 2008 Sep; 94(9):1123-5.
  5. Muraru D., Badano L.P., Piccoli G. Validation of a novel automated border-detection algorithm for rapid and accurate quantitation of left ventricular volumes based on three-dimensional echocardiography. Eur J Echocardiogr. 2010 May;11(4):359-68.
  6. Кapetanakis S., Kearney M.Т., Siva А. [et al.] Real-Time three-dimensional echocardiography: a novel technique to quantify global left ventricular mechanical dyssynchrony. Circulation. 2005 Aug 16; 112(7): 992-1000.
  7. Hare J.L., Jenkins C., Nakatani S. [et al.] Feasibility and clinical decision-making with 3D echocardiography in routine practice. Heart. 2008 Apr; 94(4):440-5.
  8. Lang RM, Mor-Avi V, Dent JM, Kramer CM. Three-dimensional echocardiography: is it ready for Everyday Clinical Use? JACC Cardiovasc Imaging. 2009 Jan;2(1):114-7.
  9. Soliman O.I.I., Van Dalen B.M., Geleijnse ML. Semi-automated left ventricular function assessment by real-time three-dimensional echocardiography is ready for prime time. Eur Heart J. 2009; 30(18): (Suppl 1) р.342.
  10. /ASERECOMMEND
  11. Jenkins C., Chan J, Hanekom L, Marwick TH. Accuracy and feasibility of online 3-dimensional echocardiography for measurement of left ventricular parameters. J Am Soc Echocardiogr. 2006; 19(9): 1119-28.
  12. Jaochim Nesser H, Sugeng L, Corsi C. [et al.] Volumetric analysis of regional left ventricular function with real-time three-dimensional echocardiography: validation by magnetic resonance and clinical utility testing. Heart. May;93(5):572-8.
  13. Leung KY, Bosch JG. Automated border detection in three-dimensional echocardiography: principles and promises. Eur J Echocardiogr. 2010 Mar; 11(2): 97-108.
  14. Iskandrian A.E., Hage F.G. Imaging Acute MI in the 21st Century. JACC Cardiovasc Imaging. 2013 Mar; 6(3): 370-2.
  15. Аlonso L. Hari P., Pidlaoan V. Acute myocarditis: can novel echocardiographic techniques assist with diagnosis? Eur J Echocardiogr. 2010 Apr;11(3):E5.
  16. Zhang Q,, Yu C,M. Clinical Implication of Mechanical Dyssynchrony in Heart Failure. J Cardiovasc Ultrasound. 2012 Sep;20(3):117-23.
  17. De Castro S, Faletra F, Di Angelantonio E. [et al.]. Tomographic left ventricular volumetric emptying analysis by real-time 3-dimensional echocardiography: influence of left ventricular dysfunction with and without electrical dyssynchrony. Circ Cardiovasc Imaging. 2008 Jul;1(1):41-9.
  18. Smiseth OA, Russell K, Skulstad H. The role of echocardiography in quantification of left ventricular dyssynchrony: state of the art and future directions. Eur Heart J Cardiovasc Imaging. 2012 Jan;13(1):61-8.
  19. Lamia B. Tanabe М., et al. Quantifying the role of regional dyssynchrony on global left ventricular performance. JACC Cardiovasc Imaging; 2009; 2(12): 1350-6.
  20. Mollema S.A., Liem S.S. Left ventricular dyssynchrony acutely after myocardial infarction predicts left ventricular remodeling. Am J Coll Cardiol. 2007, Oct 16; 50(16):1532-72.
  21. Weir R.A., McMurray J.J. Epidemiology of heart failure and left ventricular systolic dysfunction after acute myocardial infarction: prevalence, clinical characteristics and prognostic importance. Am J Cardiol; 2006, May 22;97(10A):13-25.
  22. Бойцов С.А. Никулина Н.Н. Внезапная сердечная смерть у больных ишемической болезнью сердца. (По результатам Российского многоцентрового качества диагностики и лечения острых форм ИБС (РЕЗОНАНС) /Бойцов С.А., // Российский кардиологический журнал. 2011, 2 (88) стр. 59-64.
  23. Costal F. Ferreiral J. Impact of ESC/ACCF/ AHA/ WHF universal definition of myocardial infarction on mortality at 10 years. Eur Heart J; 2012, Vol. 33(20): 2544-50.
  24. Marijon E. Puymirat E. [et al.], Ventricular fibrillation is a major determinant of in-hospital mortality but does not impact long-term mortality after myocardial infarction: the FAST-MI registry. Eur Heart J. 2011 Aug; Vol. 32 (Suppl 1): 869.
  25. deKam P.J., Nicolosi G.L. [et al.] Prediction of 6 months left ventricular dilatation after myocardial infarction in relation to cardiac morbidity and mortality. Application of a new dilatation model to GISSI-3 data. Eur Heart J. 2002,Vol.23(7):536-42.
  26. Gajarsa J.J., Kloner R.A. Left ventricular remodeling in the post-infarction heart: a review of cellular, molecular mechanisms, and therapeutic modalities. Heart Fail Rev. 2011 Jan;16(1): 13-21.
  27. French B.A., Kramer C.M. Mechanisms of PostInfarct Left Ventricular Remodeling. Drug Discov Today Dis Mech. 2007;4(3):185-196.
  28. Yousef Z.R., Redwood S.R., MarberM.S. Postinfarction left ventricular remodeling: a pathophysiological and therapeutic review. Cardiovasc Drugs Ther. 2000; Vol.14(3): 243-52.

Copyright (c) 2013 Yaroschuk N.A., Kochmasheva V.V., Dityatev V.P., Kerbikov O.B.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies