INVESTIGATION OF STRUCTURE OF THE MEMBRANE RAFTS BY MEANS OF COMPUTER MODELING

Cover Page

Cite item

Full Text

Abstract

Understanding the structure of the biological membrane and its role in the cell has evolved significantly since the introduction of the classical fluid mosaic model by Singer and Nicholson. Later fluid mosaic model has been redesigned, expanded and has become considerably complicated. It has been experimentally proved that the membrane consists of so-called rafts, which are functional “islands” with the specific lipid composition with proteins. Lipid rafts play a central role in many cellular processes, including barrier functions, membrane polarization and the cell signaling. Several groups of pathogens, bacteria, prions, viruses, parasites use lipid rafts for their purposes. Rafts always occur on both sides of the membrane opposite to each other, but the nature of the two-layer rafts are still poorly understood. Previously it was theoretically calculated that the shift of the monolayers in raft occurs, which reduces the mechanical energy of the boundaries, and ultimately leads to a bilayer structure of the raft. In this study with the help of computer modeling we study the energy of interaction between two monolayers of the raft in order to test the hypothesis about their relative shift.

About the authors

M E Bozdaganyan

ФГБУ ФНКЦ ФМБА России

Email: m.bozdaganyan@gmail.com
к.б.н., научный сотрудник лаборатории молекулярного моделирования и биоинформатики Москва, Ореховый бульвар, 28

K V Shaitan

МГУ им. М.В. Ломоносова

д.ф.-м.н., профессор Биологического факультета МГУ им. М.В. Ломоносова Москва, Ленинские горы, 1, стр. 12

References

  1. Mouritsen OG, Kinnunen PKJ. Role of Lipid Organization and Dynamics for Membrane Functionality. Biological Membranes. 1996. pp. 463-502.
  2. Cullis PR, Fenske DB, Hope MJ. Physical properties and functional roles of lipids in membranes. New Comprehensive Biochemistry. 1996. pp. 1-33.
  3. Edidin M. The state of lipid rafts: from model membranes to cells. Annu Rev Biophys Biomol Struct. 2003;32: 257-283.
  4. Pike LJ. Lipid rafts: heterogeneity on the high seas. Biochem J. 2004;378: 281-292.
  5. Hancock JF. Lipid rafts: contentious only from simplistic standpoints. Nat Rev Mol Cell Biol. 2006;7: 456-462.
  6. Simons K, Vaz WLC. Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct. 2004;33: 269-295.
  7. Gaus K, Gratton E, Kable EPW, Jones AS, Gelissen I, Kritharides L, et al. Visualizing lipid structure and raft domains in living cells with two-photon microscopy. Proc Natl Acad Sci USA. 2003;100: 15554-15559.
  8. Pralle A, Keller P, Florin EL, Simons K, Hörber JK. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol. 2000;148: 997-1008.
  9. Harder T, Scheiffele P, Verkade P, Simons K. Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol. 1998;141: 929-942.
  10. Janes PW, Ley SC, Magee AI, Kabouridis PS. The role of lipid rafts in T cell antigen receptor (TCR) signalling. Semin Immunol. 2000;12: 23-34.
  11. Sheets ED, Holowka D, Baird B. Membrane organization in immunoglobulin E receptor signaling. Curr Opin Chem Biol. 1999;3: 95-99.
  12. Holowka D, Baird B. Fc(epsilon)RI as a paradigm for a lipid raft-dependent receptor in hematopoietic cells. Semin Immunol. 2001;13: 99-105.
  13. Kholodenko BN, Hoek JB, Westerhoff HV. Why cytoplasmic signalling proteins should be recruited to cell membranes. Trends Cell Biol. 2000;10: 173-178.
  14. Lesieur C, Vécsey-Semjén B, Abrami L, Fivaz M, Gisou van der Goot F. Membrane insertion: The strategies of toxins (review). Mol Membr Biol. 1997;14: 45-64.
  15. Abrami L, van Der Goot FG. Plasma membrane microdomains act as concentration platforms to facilitate intoxication by aerolysin. J Cell Biol. 1999;147: 175-184.
  16. Zhang J, Pekosz A, Lamb RA. Influenza virus assembly and lipid raft microdomains: a role for the cytoplasmic tails of the spike glycoproteins. J Virol. 2000;74: 4634-4644.
  17. Alfsen A, Iniguez P, Bouguyon E, Bomsel M. Secretory IgA specific for a conserved epitope on gp41 envelope glycoprotein inhibits epithelial transcytosis of HIV-1. J Immunol. 2001;166: 6257-6265.
  18. Mizuno T, Nakata M, Naiki H, Michikawa M, Wang R, Haass C, et al. Cholesterol-dependent generation of a seeding amyloid beta-protein in cell culture. J Biol Chem. 1999;274: 15110-15114.
  19. Baron GS, Wehrly K, Dorward DW, Chesebro B, Caughey B. Conversion of raft associated prion protein to the protease-resistant state requires insertion of PrP-res (PrP(Sc)) into contiguous membranes. EMBO J. 2002;21: 1031-1040.
  20. Holopainen JM, Metso AJ, Mattila J-P, Jutila A, Kinnunen PKJ. Evidence for the lack of a specific interaction between cholesterol and sphingomyelin. Biophys J. 2004;86: 1510-1520.
  21. Falck E, Patra M, Karttunen M, Hyvönen MT, Vattulainen I. Lessons of slicing membranes: interplay of packing, free area, and lateral diffusion in phospholipid/ cholesterol bilayers. Biophys J. 2004;87: 1076-1091.
  22. Hofsäß C, Lindahl E, Edholm O. Molecular Dynamics Simulations of Phospholipid Bilayers with Cholesterol. Biophys J. 2003;84: 2192-2206.
  23. Vainio S, Jansen M, Koivusalo M, Róg T, Karttunen M, Vattulainen I, et al. Significance of sterol structural specificity. Desmosterol cannot replace cholesterol in lipid rafts. J Biol Chem. 2006;281: 348-355.
  24. Brown RE. Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. J Cell Sci. 1998;111 ( Pt 1): 1-9.
  25. Lee AG. Lipid phase transitions and phase diagrams. II. Mictures involving lipids. Biochim Biophys Acta. 1977;472: 285-344.
  26. Baumgart T, Hess ST, Webb WW. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature. 2003;425: 821-824.
  27. Осипенко ДС, Галимзянов ТР, Акимов СА, Латеральное перераспределение трансмембранных белков и жидко-упорядоченных доменов в липидных мембранах с неоднородной кривизной. Биологические мембраны: Журнал мембранной и клеточной биологии. 2016;33: 176-186.
  28. Galimzyanov TR, Molotkovsky RJ, Bozdaganyan ME, Cohen FS, Pohl P, Akimov SA. Elastic Membrane Deformations Govern Interleaflet Coupling of Lipid-Ordered Domains. Phys Rev Lett. 2015;115: 088101.
  29. Niemelä PS, Ollila S, Hyvönen MT, Karttunen M, Vattulainen I. Assessing the nature of lipid raft membranes. PLoS Comput Biol. 2007;3: e34.
  30. Pandit SA, Jakobsson E, Scott HL. Simulation of the early stages of nano-domain formation in mixed bilayers of sphingomyelin, cholesterol, and dioleyl-phosphatidylcholine. Biophys J. 2004;87: 3312-3322.
  31. Pandit SA, Vasudevan S, Chiu SW, Jay Mashl R, Jakobsson E, Scott HL. Sphingomyelin-Cholesterol Domains in Phospholipid Membranes: Atomistic Simulation. Biophys J. 2004;87: 1092-1100.
  32. Bozdaganyan ME, Shaitan KV. Raft formation in biological membranes: A molecular dynamics simulation study. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology. 2014;8: 290-296.
  33. Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics. 2013;29: 845-854.
  34. Mezei M. Evaluation of the Adaptive Umbrella Sampling Method. Mol Simul. 1989;3: 301-313.
  35. Meinhardt S, Vink RLC, Schmid F. Monolayer curvature stabilizes nanoscale raft domains in mixed lipid bilayers. Proc Natl Acad Sci USA. 2013;110: 4476-4481.
  36. Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA. THE weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J Comput Chem. 1992;13: 1011-1021.
  37. Sowa G, Pypaert M, Sessa WC. Distinction between signaling mechanisms in lipid rafts vs. caveolae. Proc Natl Acad Sci U S A. 2001;98: 14072-14077.
  38. Mattson MP. Membrane Microdomain Signaling: Lipid Rafts in Biology and Medicine. Springer Science & Business Media; 2007.
  39. Bacia K, Schwille P, Kurzchalia T. From The Cover: Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes. Proceedings of the National Academy of Sciences. 2005;102: 3272-3277.
  40. Takizawa N, Momose F, Morikawa Y, Nomoto A. Influenza A Virus Hemagglutinin is Required for the Assembly of Viral Components Including Bundled vRNPs at the Lipid Raft. Viruses. 2016;8. doi:10.3390/ v8090249
  41. Ruiz A, Sarah Hill M, Schmitt K, Stephens EB. Membrane raft association of the Vpu protein of human immunodeficiency virus type 1 correlates with enhanced virus release. Virology. 2010;408: 89-102.
  42. Williamson R, Sutherland C. Neuronal Membranes are Key to the Pathogenesis of Alzheimer’s Disease: the Role of Both Raft and Non-Raft Membrane Domains. Curr Alzheimer Res. 2011;999: 1-9.

Copyright (c) 2016 Bozdaganyan M.E., Shaitan K.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies