ANALYSIS OF GENE METHYLATION SHOX2, TGFBR1, MIR-375 IN DIFFERENT TYPES OF LUNG CANCER

Cover Page

Cite item

Full Text

Abstract

In the 21st century is an acute problem to find effective and inexpensive methods for the early detection of lung cancer. Patients suspected of having a malignant disease of the lungs, generally undergo clinical studies such as CT scans of the chest and bronchoscopy. The latter is mainly used to confirm the diagnosis. However, even when the signs, symptoms and radiological findings indicate that clinical diagnosis of malignant lung disease is evident, additional invasive procedures for obtaining the biological material suitable for the final confirmation of the presence of malignant cells. Currently, there is a clear understanding of the need to find biomarkers able to detect pre-clinical stage of cancer cells using minimally invasive procedures. In this paper, for the DNA of patients with different types of lung cancer samples, with a view to a better understanding of the causes of lung cancer pathology gene methylation analysis was conducted for SHOX2, TGFBR1 and MIR-375.

About the authors

D S Khodyrev

ЦБМТ ФГБУ ФНКЦ ФМБА России

Email: DmKh008@gmail.com
кандидат биологических наук, старший научный сотрудник лаборатории генетики ЦБМТ

N S Kulagina

ФГБУ ФНКЦ ФМБА России

Email: nskulagina@gmail.com
врач-пульмонолог

O I Brovkina

ЦБМТ ФГБУ ФНКЦ ФМБА России

Email: brov.olia@gmail.com
кандидат биологических наук, старший научный сотрудник лаборатории генетики ЦБМТ

V E Pokrovsky

ЦБМТ ФГБУ ФНКЦ ФМБА России

Email: vasiliy.pokrovsky@gmail.com
врач приемного отделения ЦБМТ

M G Gordiev

ГАУЗ Республиканский клинический онкологический диспансер МЗ РТ

Email: marat7925@gmail.com
заведующий Молекулярно-диагностической лабораторией

A S Кelekhsaeva

ФГБУ ФНКЦ ФМБА России

кандидат медицинских наук, врач-эндоскопист

A G Nikitin

ЦБМТ ФГБУ ФНКЦ ФМБА России

Email: avialn@gmail.com
кандидат биологических наук, заведующий лабораторией генетики ЦБМТ

A V Averyanov

ФГБУ ФНКЦ ФМБА России

Email: averyanovav@mail.ru
заведующий отделением пульмонологии ФНКЦ ФМБА России, руководитель Центра биомедицинских технологий, д.м.н.

References

  1. Robertson K.D. DNA methylation and human disease. Nat Rev Genet 2005; 6: 597-610.
  2. Ting A.H., McGarvey K.M., Baylin S.B. The cancer epigenome-components and functional correlates. Genes Dev 2006; 20: 3215-3231.
  3. Shen H., Laird P.W. Interplay between the cancer genome and epigenome. Cell 2013; 153: 38-55.
  4. Suva` M.L., Riggi N., Bernstein B.E. Epigenetic reprogramming in cancer. Science 2013; 339: 1567-1570.
  5. Laird P.W. The power and the promise of DNA methylation markers. Nat Rev Cancer 2003; 3: 253-266.
  6. Schmidt B., Liebenberg V., Dietrich D., et. al. SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer based on bronchial aspirates. BMC Cancer 2010; 10: 600.
  7. Qian J., Massion P.P. Role of chromosome 3q amplification in lung cancer. J Thorac Oncol 2008; 3: 212-215.
  8. Shen H., Gao W., Wu Y.J., et. al. Multicolor fluorescence in situ hybridization and comparative genomic hybridization reveal molecular events in lung adenocarcinomas and squamous cell lung carcinomas. Biomed Pharmacother 2009; 63: 396-403.
  9. Dehan E., Ben-Dor A., Liao W., et. al. Chromosomal aberrations and gene expression profiles in non-small cell lung cancer. Lung Cancer 2007; 56: 175-184.
  10. Yen C.C., Liang S.C., Jong Y.J., et. al. Chromosomal aberrations of malignant pleural effusions of lung adenocarcinoma: different cytogenetic changes are correlated with genders and smoking habits. Lung Cancer 2007; 57: 292-301.
  11. Huang Y.T., Heist R.S., Chirieac L.R., et. al. Genome-wide analysis of survival in early-stage non- small-cell lung cancer. J Clin Oncol 2009; 27: 2660-2667.
  12. Dietrich D., Hasinger O., Liebenberg V., et. al. DNA methylation of the homeobox genes PITX2 and SHOX2 predicts outcome in non-small-cell lung cancer patients. Diagn Mol Pathol 2012; 21: 93-104.
  13. Schneider K.U., Dietrich D., Fleischhacker M., et. al. Correlation of SHOX2 gene amplification and DNA methylation in lung cancer tumors. BMC Cancer 2011; 11: 102.
  14. Schmidt B., Liebenberg V., Dietrich D., et. al. SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer based on bronchial aspirates. BMC Cancer 2010; 10: 600.
  15. Dietrich D., Kneip C., Raji O., et. al. Performance evaluation of the DNA methylation biomarker SHOX2 for the aid in diagnosis of lung cancer based on the analysis of bronchial aspirates. Int J Oncol 2012; 40: 825-832.
  16. Kneip C., Schmidt B., Seegebarth A., et. al. SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer in plasma. J Thorac Oncol 2011; 6: 1632-1638.
  17. Hong S., Noh H., Teng Y., et. al. SHOX2 Is a Direct miR-375 Target and a Novel Epithelial-to-Mesenchymal Transition Inducer in Breast Cancer Cells Neoplasia 2014; 16(4): 279-290.
  18. Shelling A.N. Mutations in inhibin and activin genes associated with human disease. Mol Cell Endocrinol 2012; 359(1-2): 113-120.
  19. Akhurst R.J., Hata A. Targeting the TGFβ signalling pathway in disease. Nat Rev Drug Discov 2012; 11(10): 790-811.
  20. Bottinger E.P., Jakubczak J.L., Roberts I.S., et al. Expression of a dominant-negative mutant TGF-beta type II receptor in transgenic mice reveals essential roles for TGF-beta in regulation of growth and differentiation in the exocrine pancreas. EMBO J. 1997; 16(10): 2621-33.
  21. Amendt C., Schirmacher P., Weber H., et. al. Expression of a dominant negative type ii tgf-beta receptor in mouse skin results in an increase in carcinoma incidence and an acceleration of carcinoma evelopment. Oncogene 1998; 17(1): 25-34.
  22. Ammanamanchi S., Brattain M.G. Restoration of transforming growth factor-{beta} signaling through receptor RI induction by histone deacetylase activity inhibition in breast cancer cells. J Biol Chem. 2004; 279(31): 32620-32625.
  23. Osada H., Tatematsu Y., Masuda A., et al. Heterogeneous transforming growth factor (TGF)-β unresponsiveness and loss of TGF-β receptor type II expression caused by histone deacetylation in lung cancer cell lines. Cancer Res. 2001; 61(22): 8331-8339.
  24. Rykov S.V., Khodyrev D.S., Pronina I.V., et. al. Novel miRNA genes methylated in lung tumors. Genetika 2013; 49(7): 896-901.
  25. Sobin L.H., Gospodarowicz M.K., Wittekind Ch. Eds. TNM Classification of Malignant Tumors, 7th ed. Wiley-Blackwell, Oxford 2009; 310 pgs.
  26. Travis W.D., Coby T.V., Corrin B., et. al. World Health Organization International Histological Classification of Tumours; histological typing of lung and pleural tumours. Springer 1999.
  27. Pasche B., Pennison M. J., Jimenez H., et. al. Transactions of the american clinical and climatological association 2014; 125.
  28. Dong Z., Guo W., Guo Y. et. al. Concordant promoter methylation of transforming growth factor-beta receptor types I and II occurs early in esophageal squamous cell carcinoma. Am J Med Sci. 2012; 343(5): 375-381.
  29. Guo W., Dong Z., Guo Y., et. al. Concordant repression and aberrant methylation of transforming growth factor-beta signaling pathway genes occurs early in gastric cardia adenocarcinoma. Mol Biol Rep. 2012; 39(10): 9453-9462.

Copyright (c) 2016 Khodyrev D.S., Kulagina N.S., Brovkina O.I., Pokrovsky V.E., Gordiev M.G., Кelekhsaeva A.S., Nikitin A.G., Averyanov A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies