Computer simulation in the development of vaccines against covid-19 based on the hla-system antigens

Cover Page

Cite item

Full Text

Abstract

The genetic variability of population may explain different individual immune responses to the SARS-CoV-2 virus. The use of genome- and peptidome-based technologies makes it possible to develop vaccines by optimizing the target antigens. The computer modeling methodology provides the scientific community with a more complete list of immunogenic peptides, including a number of new and cross-reactive candidates. Studies conducted independently of each other with different approaches provide a high degree of confidence in the reproducibility of results. Most of the effort in developing vaccines and drugs against SARS-CoV-2 is directed towards the thorn glycoprotein (protein S), a major inducer of neutralizing antibodies. Several vaccines have been shown to be effective in the preclinical studies and have been tested in the clinical trials to combat the COVID-19 infection. This review presents the profile of in silico predicted immunogenic peptides of the SARS-CoV-2 virus for the subsequent functional validation and vaccine development, and highlights the current advances in the development of subunit vaccines to combat COVID-19, taking into account the experience that has been previously achieved with SARS-CoV and MERS-CoV. The immunoinformatics techniques reduce the time and cost of developing vaccines that together can stop this new viral infection.

About the authors

Dmitry A. Vologzhanin

Saint-Petersburg City Hospital No 40 of Kurortny District; Saint-Petersburg State University

Email: volog@bk.ru
ORCID iD: 0000-0002-1176-794X
SPIN-code: 7922-7302

MD, Dr. Sci. (Med.)

Russian Federation, 9B Borisova st., 197706, Saint Petersburg, Sestroretsk; Saint Petersburg

Aleksandr S. Golota

Saint-Petersburg City Hospital No 40 of Kurortny District

Author for correspondence.
Email: golotaa@yahoo.com
ORCID iD: 0000-0002-5632-3963
SPIN-code: 7234-7870

MD, Cand. Sci. (Med.), Associate Professor

Russian Federation, 9B Borisova st., 197706, Saint Petersburg, Sestroretsk

Tatyana A. Kamilova

Saint-Petersburg City Hospital No 40 of Kurortny District

Email: kamilovaspb@mail.ru
ORCID iD: 0000-0001-6360-132X
SPIN-code: 2922-4404

Cand. Sci. (Biol.)

Russian Federation, 9B Borisova st., 197706, Saint Petersburg, Sestroretsk

Olga V. Shneider

Saint-Petersburg City Hospital No 40 of Kurortny District

Email: o.shneider@gb40.ru
ORCID iD: 0000-0001-8341-2454
SPIN-code: 8405-1051

MD, Cand. Sci. (Med.)

Russian Federation, 9B Borisova st., 197706, Saint Petersburg, Sestroretsk

Sergey G. Sсherbak

Saint-Petersburg City Hospital No 40 of Kurortny District; Saint-Petersburg State University

Email: b40@zdrav.spb.ru
ORCID iD: 0000-0001-5047-2792
SPIN-code: 1537-9822

MD, Dr. Sci. (Med.), Professor

Russian Federation, 9B Borisova st., 197706, Saint Petersburg, Sestroretsk; Saint Petersburg

References

  1. Gorbalenya AE, Baker SC, Baric RS, et al. Severe acute respiratory syndrome-related coronavirus: the species and its viruses, a statement of the Coronavirus Study Group. BioRxiv. 2020;1–15. doi: 10.1101/2020.02.07.937862
  2. Lu R, Zhao X, Li J, et al. Characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–574. doi: 10.1016/S0140-6736(20)30251-8
  3. Forouzesh M, Rahimi A, Valizadeh R, et al. Clinical display, diagnostics and genetic implication of novel Coronavirus (COVID-19) epidemic. Eur Rev Med Pharmacol Sci. 2020;24(8):4607–4615. doi: 10.26355/eurrev_202004_21047
  4. Tian X, Li C, Huang A, et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microb Infect. 2020;9(1):382–385. doi: 10.1080/22221751.2020.1729069
  5. Самсонова М.В., Черняев А.Л., Михалева Л.М., и др. Патологическая анатомия легких при COVID-19. Атлас / под общей ред. О.В. Зайратьянца. Москва; Рязань, 2020. 52 с. [Samsonova MV, Chernyaev AL, Mikhaleva LM, et al. Vitiatam anatomia pulmo in COVID-19. Atlas. Ed. by O.V. Zairatyants. Moscow; Ryazan; 2020. 52 p. (In Russ).]
  6. Arabi YM, Murthy S, Webb S. COVID-19: a novel coronavirus and a novel challenge for critical care. Intensive Care Med. 2020;46(5):833–836. doi: 10.1007/s00134-020-05955-1
  7. Giamarellos-Bourboulis EJ, Netea MG, Rovina N, et al. Complex immune dysregulation in COVID-19 patients with severe respiratory failure. Cell Host Microbe. 2020;27(6):992–1000.e3. doi: 10.1016/j.chom.2020.04.009
  8. Nguyen A, David JK, Maden SK, et al. Human leukocyte antigen susceptibility map for SARS-CoV-2. J Virol. 2020;94(13):e00510–e00520. doi: 10.1128/JVI.00510-20
  9. Kiyotani K, Toyoshima Y, Nemoto K, Nakamura Y. Bioinformatic prediction of potential T cell epitopes for SARS-Cov-2. J Hum Genet. 2020;65(7):569–575.doi: 10.1038/s10038-020-0771-5
  10. Joshi A, Joshi BC, Mannan MA, Kaushik V. Epitope based vaccine prediction for SARS-COV-2 by deploying immuno-informatics approach. Inform Med Unlocked. 2020;100338. doi: 10.1016/j.imu.2020.100338
  11. Wang F, Hou H, Luo Y, et al. The laboratory tests and host immunity of COVID-19 patients with different severity of illness. JCI Insight. 2020;5(10):e137799. doi: 10.1172/jci.insight.137799
  12. Alijotas-Reig J, Esteve-Valverde E, Belizna C, et al. Immunomodulatory therapy for the management of severe COVID-19. Beyond the anti-viral therapy: A comprehensive review. Autoimmun Rev. 2020;19(7):102569. doi: 10.1016/j.autrev.2020.102569
  13. Shi Y, Wang Y, Shao C, et al. COVID-19 infection: the perspectives on immune responses. Cell Death Differ. 2020;27(5):1451–1454. doi: 10.1038/s41418-020-0530-3
  14. Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020;10(2):102–108. doi: 10.1016/j.jpha.2020.03.001
  15. Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med. 2020;382(10):929–936. doi: 10.1056/NEJMoa2001191
  16. Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420–422. doi.: 10.1016/S2213-2600(20)30076-X
  17. Zhang S, Gan J, Chen BG, et al. Dynamics of peripheral immune cells and their HLA-G and receptor expressions in a patient suffering from critical COVID-19 pneumonia to convalescence. Clin Transl Immunology. 2020;9(5):e1128. doi: 10.1002/cti2.1128
  18. Wang W, Zhang W, Zhang J, et al. Distribution of HLA allele frequencies in 82 chinese individuals with Coronavirus Disease-2019 (COVID-19). HLA. 2020;96(2):194–196. doi: 10.1111/tan.13941
  19. Thevarajan I, Nguyen HO, Koutsakos M, et al. Breadth of concomitant immune responses prior to patient recovery: a case-report of non-severe COVID-10. Nat Med. 2020;26(4):453–455. doi: 10.1038/s41591-020-0819-2
  20. Jamilloux Y, Henryb T, Belot A, et al. Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun Rev. 2020;19(7):102567. doi: 10.1016/j.autrev.2020.102567
  21. Bhattacharya M, Sharma AR, Patra P, et al. Development of epitope-based peptide vaccine against novel coronavirus 2019 (SARS-COV-2): Immunoinformatics approach. J Med Virol. 2020;92(6):618–631. doi: 10.1002/jmv.25736
  22. Baruah V, Bose S. Immunoinformatics-aided identification of T cell and B cell epitopes in the surface glycoprotein of SARS-CoV-2. J Med Virol. 2020;92(5):495–500. doi: 10.1002/jmv.25698
  23. Santoni D, Vergni D. In the search of potential epitopes for Wuhan seafood market pneumonia virus using high order nullomers. J Immunol Methods. 2020;481–482:112787. doi: 10.1016/j.jim.2020.112787
  24. Klausen MS, Jespersen MC, Nielsen H, et al. NetSurfP-2.0: Improved prediction of protein structural features by integrated deep learning. Proteins. 2019;87(6):520–527. doi: 10.1002/prot.25674
  25. Enayatkhani M, Hasaniazad M, Faezi S, et al. Reverse vaccinology approach to design a novel multi-epitope vaccine candidate against COVID-19: an in silico study. J Biomol Struct Dyn. 2020;1–16. doi: 10.1080/07391102.2020.1756411
  26. Lee CH, Koohy H. In silico identification of vaccine targets for SARS-CoV-2. F1000Res. 2020;9:145. doi: 10.12688/f1000research.22507.2
  27. Sarkar B, Ullah A, Johora FT, et al. Immunoinformatics-guided designing of epitope-based subunit vaccine against the SARS Coronavirus-2 (SARS-CoV-2). Immunobiology. 2020;225(3):151955. doi: 10.1016/j.imbio.2020.151955
  28. Kalita P, Padhi AK, Zhang KY, Tripathi T. Design of a peptide-based subunit vaccine against novel coronavirus SARS-CoV-2. Microb Pathog. 2020;145:104236. doi: 10.1016/j.micpath.2020.104236
  29. Wang F, Kream RM, Stefano GB. An evidence based perspective on mRNA-SARS-CoV-2 vaccine development. Med Sci Monit. 2020;26:e924700. doi: 10.12659/MSM.924700
  30. Ortega JT, Serrano ML, Pujol FH, Rangel HR. Role of changes in SARS-CoV-2 spike protein in the interaction with the human ACE2 receptor: an in silico analysis. EXCLI J. 2020;19:410–417. doi: 10.17179/excli2020-1167
  31. Corbett KS, Edwards DK, Leist SR, et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature. 2020;586(7830):567–571. doi: 10.1038/s41586-020-2622-0
  32. Walsh EE, Frenck RW, Falsey AR, et al. Safety and immunogenicity of two RNA-based Covid-19 vaccine candidates. N Engl J Med. 2020;383(25):2439–2450. doi: 10.1056/NEJMoa2027906
  33. Xia X. Domains and functions of spike protein in SARS-Cov-2 in the context of vaccine design. Viruses. 2021;13(1):109. doi: 10.3390/v13010109

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Step-by-step strategies of the reverse vaccinology approach of vaccine development [27].

Download (407KB)

Copyright (c) 2021 Vologzhanin D.A., Golota A.S., Kamilova T.A., Shneider O.V., Sсherbak S.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies