Pathogenesis of the initial stages of severe COVID-19

Cover Page

Cite item

Abstract

Since SARS-CoV-2 first appeared in humans, the scientific community has tried to gather as much information as possible in order to find effective strategies for the containment and treatment this pandemic coronavirus. We reviewed the current published literature on SARS-CoV-2 with an emphasis on the distribution of SARS-CoV-2 in tissues and body fluids, as well as data on the expression of its input receptors on the cell surface. COVID-19 affects many organ systems in many ways. These varied manifestations are associated with viral tropism and immune responses of the infected person, but the exact mechanisms are not yet fully understood. We emphasize the broad organotropism of SARS-CoV-2, as many studies have identified viral components (RNA, proteins) in many organs, including immune cells, pharynx, trachea, lungs, blood, heart, blood vessels, intestines, brain, kidneys, and male reproductive organs. Viral components are present in various body fluids, such as mucus, saliva, urine, cerebrospinal fluid, semen and breast milk. The main SARS-CoV-2 receptor, ACE2, is expressed at different levels in many tissues throughout the human body, but its expression levels do not always correspond to the detection of SARS-CoV-2, indicating a complex interaction between the virus and humans. We also highlight the role of the renin-angiotensin aldosterone system and its inhibitors in the context of COVID-19. In addition, SARS-CoV-2 has various strategies that are widely used in various tissues to evade innate antiviral immunity. Targeting immune evasion mediators of the virus can block its replication in COVID-19 patients. Together, these data shed light on the current understanding of the pathogenesis of SARS-CoV-2 and lay the groundwork for better diagnosis and treatment of patients with COVID-19.

About the authors

Alexander S. Golota

Saint-Petersburg City Hospital No 40 of Kurortny District

Author for correspondence.
Email: golotaa@yahoo.com
ORCID iD: 0000-0002-5632-3963
SPIN-code: 7234-7870

MD, Cand. Sci. (Med.), Associate Professor

Russian Federation, 9B Borisova st., 197706, Saint Petersburg, Sestroretsk

Tatyana A. Kamilova

Saint-Petersburg City Hospital No 40 of Kurortny District

Email: kamilovaspb@mail.ru
ORCID iD: 0000-0001-6360-132X
SPIN-code: 2922-4404

Cand. Sci. (Biol.)

Russian Federation, 9B Borisova st., 197706, Saint Petersburg, Sestroretsk

Olga V. Shneider

Saint-Petersburg City Hospital No 40 of Kurortny District

Email: o.shneider@gb40.ru
ORCID iD: 0000-0001-8341-2454
SPIN-code: 8405-1051

MD, Cand. Sci. (Med.)

Russian Federation, 9B Borisova st., 197706, Saint Petersburg, Sestroretsk

Dmitry A. Vologzhanin

Saint-Petersburg City Hospital No 40 of Kurortny District; Saint-Petersburg State University

Email: volog@bk.ru
ORCID iD: 0000-0002-1176-794X
SPIN-code: 7922-7302

MD, Dr. Sci. (Med.)

Russian Federation, 9B Borisova st., 197706, Saint Petersburg, Sestroretsk; 7-9, Universitetskaya nab., St. Petersburg, 199034

Sergey G. Sherbak

Saint-Petersburg City Hospital No 40 of Kurortny District; Saint-Petersburg State University

Email: b40@zdrav.spb.ru
ORCID iD: 0000-0001-5047-2792
SPIN-code: 1537-9822

MD, Dr. Sci. (Med.), Professor

Russian Federation, 9B Borisova st., 197706, Saint Petersburg, Sestroretsk; 7-9, Universitetskaya nab., St. Petersburg, 199034

References

  1. WHO Coronavirus Disease (COVID-19) Dashboard [Internet]. Available from: https://covid19.who.int/
  2. Mohandas S, Vairappan B. SARS-CoV-2 infection and the gut‐liver axis. J Dig Dis. 2020;21(12):687–695. doi: 10.1111/1751-2980.12951
  3. Ahmadian E, Khatibi SM, Soofiyani SR, et al. COVID-19 and kidney injury: pathophysiology and molecular mechanisms. Rev Med Virol. 2021;31(3):e2176. doi: 10.1002/rmv.2176
  4. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280. doi: 10.1016/j.cell.2020.02.052
  5. Johnson AS, Fatemi R, Winlow W. SARS-CoV-2 bound human serum albumin and systemic septic shock. Front Cardiovasc Med. 2020;7:153. doi: 10.3389/fcvm.2020.00153
  6. Trypsteen W, van Cleemput J, van Snippenberg W, et al. On the whereabouts of SARS-CoV-2 in the human body: A systematic review. PLoS Pathog. 2020;16(10):e1009037. doi: 10.1371/journal.ppat.1009037
  7. Satarker S, Nampoothiri M. Structural proteins in severe acute respiratory syndrome coronavirus-2. Arch Med Res. 2020;51(06):482–491. doi: 10.1016/j.arcmed.2020.05.012. 291
  8. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020;383(2):120–128. doi: 10.1056/NEJMoa2015432
  9. Cabibbo G, Rizzo GE, Stornello C, et al. SARS-CoV-2 infection in patients with a normal or abnormal liver. J Viral Hepat. 2021;28(1):4–11. doi: 10.1111/jvh.13440
  10. Gheblawi M, Wang K, Viveiros A, et al. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circ Res. 2020;126(10):1456–1474. doi: 10.1161/CIRCRESAHA.120.317015
  11. Lax SF, Skok K, Zechner P, et al. Pulmonary arterial thrombosis in COVID-19 with fatal outcome : results from a prospective, single-center, clinicopathologic case series. Ann Intern Med. 2020;173(5):350–361. doi: 10.7326/M20-2566
  12. Rosen HR, O’Connell C, Nadim MK. Extrapulmonary manifestations of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection. J Med Virol. 2020;10.1002/jmv.26595. doi: 10.1002/jmv.26595
  13. Wang J, Saguner AM, An J, et al. Dysfunctional coagulation in COVID-19: from cell to bedside. Adv Ther. 2020b;37(7):3033–3039. doi: 10.1007/s12325-020-01399-7
  14. Chen DY, Khan N, Close BJ, et al. SARS-CoV-2 desensitizes host cells to interferon through inhibition of the JAK-STAT pathway. bioRxiv. 2020;2020.10.27.358259. doi: 10.1101/2020.10.27.358259
  15. Li MY, Li L, Zhang Y, Wang XS. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect Dis Poverty. 2020;9(1):45. doi: 10.1186/s40249-020-00662-x
  16. Unudurthi SD, Luthra P, Bose RJ. Cardiac inflammation in COVID-19: Lessons from heart failure. Life Sci. 2020; 260:118482. doi: 10.1016/j.lfs.2020.118482
  17. Nicin L, Abplanalp WT, Mellentin H, et al. Cell type-specific expression of the putative SARS-CoV-2 receptor ACE2 in human hearts. Eur Heart J. 2020;41(19):1804–1806. doi: 10.1093/eurheartj/ehaa311
  18. Gencer S, Lacy M, Atzler D, et al. Immunoinflammatory, thrombohaemostatic, and cardiovascular mechanisms in COVID-19. Thromb Haemost. 2020;120(12):1629–1641. doi: 10.1055/s-0040-1718735
  19. Barker H, Parkkila S. Bioinformatic characterization of angiotensin-converting enzyme 2, the entry receptor for SARS-CoV-2. PLoS One. 2020;15(10):e0240647. doi: 10.1371/journal.pone.0240647
  20. Daly JL, Simonetti B, Klein K, et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science. 2020;370(6518):861–865. doi: 10.1126/science.abd3072
  21. Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367(6483):1260–1263. doi: 10.1126/science.abb2507
  22. Huang N, Perez P, Kato T, et al. Integrated single-cell atlases reveal an oral SARS-CoV-2 infection and transmission axis. medRxiv. 2020;2020.10.26.20219089. doi: 10.1101/2020.10.26.20219089
  23. Borczuk AC, Salvatore SP, Seshan SV, et al. COVID-19 pulmonary pathology: a multi-institutional autopsy cohort from Italy and New York City. Mod Pathol. 2020;33(11):2156–2168. doi: 10.1038/s41379-020-00661-1
  24. Lamers MM, Beumer J, van der Vaart J, et al. SARS-CoV-2 productively infects human gut enterocytes. Science. 2020;369(6499):50–54. doi: 10.1126/science.abc1669
  25. Qian Q, Fan L, Liu W, et al. Direct evidence of active SARS-CoV-2 replication in the intestine. Clin Infect Dis. 2020;ciaa925. doi: 10.1093/cid/ciaa925
  26. Wang Y, Liu S, Liu H, et al. SARS-CoV-2 infection of the liver directly contributes to hepatic impairment in patients with COVID-19. J Hepatol. 2020;73(4):807–816. doi: 10.1016/j.jhep.2020.05.002
  27. Puelles VG, Lütgehetmann M, Lindenmeyer MT. Multiorgan and renal tropism of SARS-CoV-2. N Engl J Med. 2020;383(6):590–592. doi: 10.1056/NEJMc2011400.271
  28. Lindner D, Fitzek A, Bräuninger H, et al. Association of cardiac infection with SARS-CoV-2 in confirmed COVID19 autopsy cases. JAMA Cardiol. 2020;5(11):1281–1285. doi: 10.1001/jamacardio.2020.3551
  29. Song E, Zhang C, Israelow B, et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Exp Med. 2021;218(3):e20202135. doi: 10.1084/jem.20202135
  30. Levi M, Thachil J, Iba T, Levy JH. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020;7(6):438–440. doi :10.1016/S2352-3026(20)30145-9
  31. Cantuti-Castelvetri L, Ojha R, Pedro LD, et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 2020;370(6518):856–860. doi: 10.1126/science.abd2985
  32. Wei J, Alfajaro MM, DeWeirdt PC, et al. Genome-wide CRISPR screens reveal host factors critical for SARS-CoV-2 infection. Cell. 2021;184(1):76–91.e13. doi: 10.1016/j.cell.2020.10.028
  33. South AM, Diz DI, Chappell MC. COVID-19, ACE2, and the cardiovascular consequences. Am J Physiol Heart Circ Physiol. 2020;318(05):H1084–H1090. doi: 10.1152/ajpheart.00217.2020
  34. Wang K, Gheblawi M, Oudit GY. Angiotensin converting enzyme 2: a double-edged sword. Circulation. 2020b;142(5):426–428. doi: 10.1161/CIRCULATIONAHA.120.047049
  35. Verdecchia P, Cavallini C, Spanevello A, Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med. 2020;76:14–20. doi: 10.1016/j.ejim.2020.04.037
  36. Mehra MR, Desai SS, Kuy S, et al. Cardiovascular disease, drug therapy, and mortality in COVID-19. N Engl J Med. 2020;382(25):e102. doi: 10.1056/NEJMoa2007621
  37. Chen D, Li X, Song Q, et al. Assessment of hypokalemia and clinical characteristics in patients with Coronavirus Disease 2019 in Wenzhou, China. JAMA Netw Open. 2020;3(6):e2011122. doi: 10.1001/jamanetworkopen.2020.11122
  38. Malha L, Mueller FB, Pecker MS, et al. COVID-19 and the renin‐angiotensin system. Kidney Int Rep. 2020;5(5):563–565. doi: 10.1016/j.ekir.2020.03.024
  39. Tolouian R, Vahed SZ, Ghiyasvand S, et al. COVID-19 interactions with angiotensin‐converting enzyme 2 (ACE2) and the kinin system; looking at a potential treatment. J Renal Inj Prev. 2020;9(2):e19. doi: 10.34172/jrip.2020.19
  40. Meini S, Zanichelli A, Sbrojavacca R, et al. Understanding the pathophysiology of COVID-19: could the contact system Be the key? Front Immunol. 2020;11:2014. doi: 10.3389/fimmu.2020.02014
  41. Van de Veerdonk FL, Netea MG, van Deuren M, et al. Kallikrein-kinin blockade in patients With COVID-19 to prevent acute respiratory distress syndrome. Elife. 2020;9:e57555. doi: 10.7554/eLife.57555
  42. Garvin MR, Alvarez C, Miller JI, et al. A mechanistic model and therapeutic interventions for COVID-19 involving a RAS-mediated bradykinin storm. Elife. 2020;9:e59177. doi: 10.7554/eLife.59177
  43. Fu Y, Cheng Y, Wu Y. Understanding SARS-CoV-2-mediated inflammatory responses: from mechanisms to potential therapeutic tools. Virol Sin. 2020;35(3):266–671. doi: 10.1007/s12250-020-00207-4
  44. Rabi FA, Al Zoubi MS, Kasasbeh GA, et al. SARS-CoV-2 and coronavirus disease 2019: what we know so far. Pathogens. 2020;9(3):231. doi: 10.3390/pathogens9030231
  45. Bermejo-Martin JF, Almansa R, Menendez R, et al. Lymphopenic community acquired pneumonia as signature of severe COVID-19 infection. J Inf Secur. 2020;80(5):e23–e24. doi: 10.1016/j.jinf.2020.02.029
  46. Diao B, Wang C, Tan Y, et al. Reduction and functional exhaustion of T cells in patients with Coronavirus Disease 2019 (COVID-19). Front Immunol. 2020;11:827. doi: 10.3389/fimmu.2020.00827
  47. Pontelli MC, Castro IA, Martins RB, et al. Infection of human lymphomononuclear cells by SARS-CoV-2. bioRxiv. 2020;2020.07.28.225912. doi: 10.1101/2020.07.28.225912
  48. Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol. 2020;20(6):355–362. doi: 10.1038/s41577-020-0331-4
  49. Blanco-Melo D, Nilsson-Payant BE, Liu W-C, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181(5):1036–1045.e9. doi: 10.1016/j.cell.2020.04.026
  50. Del Valle DM, Kim-Schulze S, Huang C, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5
  51. Jose RJ, Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med. 2020;8(6):e46–e47. doi: 10.1016/S2213-2600(20)30216-2
  52. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–1034. doi: 10.1016/S0140-6736(20)30628-0
  53. Zheng M, Williams EP, Malireddi RK, et al. Impaired NLRP3 inflammasome activation/pyroptosis leads to robust inflammatory cell death via caspase8/RIPK3 during coronavirus infection. J Biol Chem. 2020;295(41):14040–14052. doi: 10.1074/jbc.RA120.015036
  54. Henderson LA, Canna SW, Schulert GS, et al. On the alert for cytokine storm: immunopathology in COVID-19. Arthritis Rheumatol. 2020;72(7):1059–1063. doi: 10.1002/art.41285
  55. Mangalmurti N, Hunter CA. Cytokine storms: understanding COVID-19. Immunity. 2020;53(1):19–25. doi: 10.1016/j.immuni.2020.06.017
  56. Hadjadj J, Yatim N, Barnabei L, et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020;369(6504):718–724. doi: 10.1126/science.abc6027
  57. Vabret N, Britton GJ, Gruber C, et al. Sinai Immunology Review Project. Immunology of COVID-19: current state of the science. Immunity. 2020;52(6):910–941. doi: 10.1016/j.immuni.2020.05.002
  58. Saris A, Reijnders TD, Nossent EJ, et al. Distinct cellular immune profiles in the airways and blood of critically ill patients with COVID 19. Thorax. 2021;thoraxjnl-2020-216256. doi: 10.1136/thoraxjnl-2020-216256
  59. Lucas C, Wong P, Klein J, et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature. 2020;584(7821):463–469. doi: 10.1038/s41586-020-2588-y
  60. Karki R, Sharma BR, Tuladhar S, et al. COVID-19 cytokines and the hyperactive immune response: synergism of TNF-α and IFN-γ in triggering inflammation, tissue damage, and death. medRxiv. 2020;2020.10.29.361048. doi: 10.1101/2020.10.29.361048
  61. Locatelli F, Jordan MB, Allen C, et al. Emapalumab in children with primary hemophagocytic lymphohistiocytosis. N Engl J Med. 2020;382(19):1811–1822. doi: 10.1056/NEJMoa1911326
  62. Atal S, Fatima Z. IL-6 inhibitors in the treatment of serious COVID-19: a promising therapy? Pharmaceut Med. 2020;34(4):223–231. doi: 10.1007/s40290-020-00342-z
  63. Huet T, Beaussier H, Voisin O, et al. Anakinra for severe forms of COVID-19: a cohort study. Lancet Rheumatol. 2020;2(7):e393–e400. doi: 10.1016/S2665-9913(20)30164-8
  64. Lythgoe MP, Middleton P. Ongoing clinical trials for the management of the COVID-19 pandemic. Trends Pharmacol Sci. 2020;41(6):363–382. doi: 10.1016/j.tips.2020.03.006
  65. Kox M, Waalders NJ, Kooistra EJ, et al. Cytokine levels in critically ill patients with COVID-19 and other conditions. JAMA. 2020;324(15):1565–1567. doi: 10.1001/jama.2020.17052
  66. Leisman DE, Ronner L, Pinotti R, et al. Cytokine elevation in severe and critical COVID-19: a rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir Med. 2020;8(12):1233–1244. doi: 10.1016/S2213-2600(20)30404-5
  67. McGonagle D, Sharif K, O’Regan A, Bridgewood C. The role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. Autoimmun Rev. 2020b;19(06):102537. doi: 10.1016/j.autrev.2020.102537
  68. Liao M, Liu Y, Yuan J, et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat Med. 2020;26(06):842–844. doi: 10.1038/s41591-020-0901-9
  69. Feng Z, Diao B, Wang R, et al. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly decimates human spleens and lymph nodes. MedRxiv. 2020a;2:2020.03.27.20045427. doi: 10.1101/2020.03.27.20045427
  70. Terpos E, Ntanasis‐Stathopoulos I, Elalamy I, et al. Hematological findings and complications of COVID-19. Am J Hematol. 2020;95(7):834–847. doi: 10.1002/ajh.25829.324
  71. Zheng HY, Zhang M, Yang CX, et al. Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients. Cell Mol Immunol. 2020;17(5):541–543. doi: 10.1038/s41423-020-0401-3
  72. Kaneko N, Kuo HH, Boucau J, et al. The loss of Bcl-6 expressing t follicular helper cells and the absence of germinal centers in COVID-19. SSRN (Social Science Research Network). 2020;3652322. doi: 10.2139/ssrn.3652322
  73. Xu Z, Shi L, Wang Y, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420–422. doi: 10.1016/S2213-2600(20)30076-X
  74. Bastard P, Rosen LB, Zhang Q, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4585. doi: 10.1126/science.abd4585
  75. Zhang Q, Bastard P, Liu Z, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4570. doi: 10.1126/science.abd4570
  76. Wang N, Zhan Y, Zhu L, et al. Retrospective multicenter cohort study shows early interferon therapy is associated with favorable clinical responses in COVID-19 patients. Cell Host Microbe. 2020;28(3):455–464.e2. doi: 10.1016/j.chom.2020.07.005
  77. Pan H, Peto R, Henao-Restrepo AM, et al.; WHO Solidarity Trial Consortium. Repurposed antiviral drugs for Covid-19 — Interim WHO Solidarity Trial Results. N Engl J Med. 2021;384(6):497–511. doi: 10.1056/NEJMoa2023184
  78. Rao VU, Arakeri G, Subash A, et al. COVID-19: Loss of bridging between innate and adaptive immunity? Med Hypotheses. 2020;144:109861. doi: 10.1016/j.mehy.2020.109861
  79. Du SQ, Yuan W. Mathematical modeling of interaction between innate and adaptive immune responses in COVID-19 and implications for viral pathogenesis. J Med Virol. 2020;92(9):1615–1628. doi: 10.1002/jmv.25866
  80. Lagunas-Rangel FA. Neutrophil-to-lymphocyte ratio and lymphocyte-to-C-reactive protein ratio in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. J Med Virol. 2020;92(10):1733–1734. doi: 10.1002/jmv.25819
  81. Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;71(15):762–768. doi: 10.1093/cid/ciaa248
  82. Combes AJ, Courau T, Kuhn NF, et al. Global absence and targeting of protective immune states in severe COVID-19. Nature. 2021;591(7848):124–130. doi: 10.1038/s41586-021-03234-7
  83. Olbei M, Hautefort I, Modos D, et al. SARS-CoV-2 causes a different cytokine response compared to other cytokine storm-causing respiratory viruses in severely ill patients. Front Immunol. 2021;12:629193. doi: 10.3389/fimmu.2021.629193
  84. Chang SE, Feng A, Meng W, et al. New-onset IgG autoantibodies in hospitalized patients with COVID-19. medRxiv. 2021;2021.01.27.21250559. doi: 10.1101/2021.01.27.21250559
  85. Allali G, Marti C, Grosgurin O, et al. Dyspnea: the vanished warning symptom of COVID-19 pneumonia. J Med Virol. 2020;92(11):2272–2273. doi: 10.1002/jmv.26172
  86. Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med. 2020;382(10):929–936. doi: 10.1056/NEJMoa2001191
  87. Ahmed MU, Hanif M, Ali MJ, et al. Neurological manifestations of COVID-19 (SARS-CoV-2): a review. Front Neurol. 2020;11:518. doi: 10.3389/fneur.2020.00518
  88. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘cytokine storm’ in COVID-19. J Inf Secur. 2020;80(6):607–613. doi: 10.1016/j.jinf.2020.03.037
  89. Amraei R, Rahimi N. COVID-19, renin-angiotensin system and endothelial dysfunction. Cells. 2020;9(7):1652. doi: 10.3390/cells9071652
  90. Jesenak M, Brndiarova M, Urbancikova I, et al. Immune parameters and COVID-19 infection — associations with clinical severity and disease prognosis. Front Cell Infect Microbiol. 2020;10:364. doi: 10.3389/fcimb.2020.00364
  91. CDC. National Center for Health Statistics Homepage. Available from: https://www.cdc.gov/nchs/nvss/vsrr/covid_weekly/index.htm
  92. Lippi G, Mattiuzzi C. Hemoglobin value may be decreased in patients with severe coronavirus disease 2019. Hematol Transfusion Cell Ther. 2020b;42(2):116–117. doi: 10.1016/j.htct.2020.03.001
  93. Liu W, Li H. Covid-19: Attacks the 1-beta chain of hemoglobin and captures the porphyrin to inhibit human heme metabolism. ChemRxiv. 2020. doi: 10.26434/chemrxiv.11938173
  94. Ahmed SF, Quadeer AA, McKay MR. Preliminary identification of potential vaccine targets for the COVID-19 Coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses. 2020;12(3):254. doi: 10.3390/v12030254
  95. Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–273. doi: 10.1038/s41586-020-2012-7
  96. Gattinoni L, Chiumello D, Rossi S. COVID-19 pneumonia: ARDS or not? Crit Care. 2020a;24(1):154. doi: 10.1186/s13054-020-02880-z
  97. Johnson AS, Fatemi R, Winlow W. SARS-CoV-2 bound human serum albumin and systemic septic shock. Front Cardiovasc Med. 2020;7:153. doi: 10.3389/fcvm.2020.00153
  98. Adachi T, Chong JM, Nakajima N, et al. Clinicopathologic and immunohistochemical findings from autopsy of patient with COVID-19, Japan. Emerg Infect Dis. 2020;26(9):2157–2161. doi: 10.3201/eid2609.201353
  99. Lippi G, Plebani M. Procalcitonin in patients with severe coronavirus disease 2019 (COVID-19): a meta-analysis. Clin Chim Acta. 2020d;505:190–191. doi: 10.1016/j.cca.2020.03.004
  100. Rawson TM, Moore LS, Zhu N, et al. Bacterial and fungal co-infection in individuals with coronavirus: a rapid review to support COVID-19 antimicrobial prescribing. Clin Infect Dis. 2020;71(9):2459–2468. doi: 10.1093/cid/ciaa530
  101. Goyal P, Choi JJ, Pinheiro LC, et al. Clinical сharacteristics of Covid-19 in New York City. N Engl J Med. 2020;382(24):2372–2374. doi: 10.1056/NEJMc2010419
  102. Kim D, Quinn J, Pinsky B, et al. Rates of co-infection between SARS-CoV-2 and other respiratory pathogens. JAMA. 2020;323(20):2085–2086. doi: 10.1001/jama.2020.6266
  103. Scozzi D, Cano M, Ma L, et al. Circulating mitochondrial DNA is an early indicator of severe illness and mortality from COVID-19. JCI Insight. 2021;6(4):143299. doi: 10.1172/jci.insight.143299.

Copyright (c) 2021 Golota A.S., Kamilova T.A., Shneider O.V., Vologzhanin D.A., Sherbak S.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies