Regenerative rehabilitation of skeletal muscle damages

Cover Page

Cite item

Full Text

Abstract

The article is devoted to the analysis of the current state of regenerative and rehabilitative treatments of skeletal muscles, the possibilities of restoring the functioning of tissue lost due to aging, injuries or diseases. The study of the molecular genetic basis of mechanotransduction and mechanotherapy will allow the identification of genes and molecules, the expression levels of which can serve as biomarkers of the effectiveness of regenerative-rehabilitation measures. These mechanisms are potential therapeutic targets for stimulating of regeneration of skeletal muscles. The focus of the article is on the choice of an individual approach, both when conducting basic scientific research and developing rehabilitation programs. All this will significantly improve patient outcomes.

About the authors

Sergey G. Sсherbak

Saint-Petersburg State University; Saint-Petersburg City Hospital No 40 of Kurortny District

Author for correspondence.
Email: b40@zdrav.spb.ru
ORCID iD: 0000-0001-5047-2792
SPIN-code: 1537-9822

M.D., Ph.D., Dr. Sci. (Med.), Professor

Russian Federation, 7/9 Universitetskaya nab., Saint Petersburg, 199034; Saint Petersburg

Stanislav V. Makarenko

Saint-Petersburg State University; Saint-Petersburg City Hospital No 40 of Kurortny District

Email: st.makarenko@gmail.com
ORCID iD: 0000-0002-1595-6668
SPIN-code: 8114-3984

Assistant Lecturer

Russian Federation, 7/9 Universitetskaya nab., Saint Petersburg, 199034; Saint Petersburg

Tatyana A. Kamilova

Saint-Petersburg City Hospital No 40 of Kurortny District

Email: kamilovaspb@mail.ru
ORCID iD: 0000-0001-6360-132X
SPIN-code: 2922-4404

Ph.D.

Russian Federation, Saint Petersburg

Alexander S. Golota

Saint-Petersburg City Hospital No 40 of Kurortny District

Email: golotaa@yahoo.com
ORCID iD: 0000-0002-5632-3963
SPIN-code: 7234-7870

M.D., Ph.D., Associate Professor

Russian Federation, Saint Petersburg

Andrey M. Sarana

Saint-Petersburg State University; Health Committee of Saint Petersburg

Email: asarana@mail.ru
ORCID iD: 0000-0003-3198-8990
SPIN-code: 7922-2751

M.D., Ph.D.

Russian Federation, 7/9 Universitetskaya nab., Saint Petersburg, 199034; Saint Petersburg

References

  1. Rando TA, Ambrosio F. Regenerative rehabilitation: applied biophysics meets stem cell therapeutics. Cell Stem Cell. 2018; 22(3):306–309. doi: 10.1016/j.stem.2018.02.003
  2. Thompson WR, Scott A, Loghmani MT, et al. Understanding mechanobiology: physical therapists as a force in mechanotherapy and musculoskeletal regenerative rehabilitation. Phys Ther. 2016;96(4):560–569. doi: 10.2522/ptj.20150224
  3. Dunn SL, Olmedo ML. Mechanotransduction: relevance to physical therapist practice-understanding our ability to affect genetic expression through mechanical forces. Phys Ther. 2016;96(5): 712–721. doi: 10.2522/ptj.20150073
  4. Becker C, Lord SR, Studenski SA, et al. Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomized, phase 2 trial. Lancet Diabetes Endocrinol. 2015;3(12):948–957. doi: 10.1016/S2213-8587(15)00298-3
  5. Curtis CL, Goldberg A, Kleim JA, Wolf SL. Translating genomic advances to physical therapist practice: a closer look at the nature and nurture of common diseases. Physical Therapy. 2016;96(4):570–580. doi: 10.2522/ptj.20150112
  6. Chen YW, Gregory C, Ye F, et al. Molecular signatures of differential responses to exercise trainings during rehabilitation. Biomed Genet Genom. 2017;2(1). doi: 10.15761/BGG.1000127
  7. Martone AM, Marzetti E, Calvani R, et al. Exercise and protein intake: a synergistic approach against sarcopenia. Biomed Res Int. 2017;2017:2672435. doi: 10.1155/2017/2672435
  8. Landi F, Calvani R, Tosato M, et al. Protein intake and muscle health in old age: from biological plausibility to clinical evidence. Nutrients. 2016;8(5):295. doi: 10.3390/nu8050295
  9. World Health Organization. Global Recommendations on Physical Activity for Health. Geneva, Switzerland: WHO; 2010. Available from: http://apps.who.int/iris/bitstream/10665/44399/1/ 9789241599979_eng.pdf
  10. Cartee GD, Hepple RT, Bamman MM, Zierath JR. Exercise promotes healthy aging of skeletal muscle. Cell Metabolism. 2016;23(6):1034–1047. doi: 10.1016/j.cmet.2016.05.007
  11. Bowen TS, Schuler G, Adams V. Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J Cachexia Sarcopenia Muscle. 2015;6(3):197–207. doi: 10.1002/jcsm.12043
  12. Nunes PR, Barcelos LC, Oliveira AA, et al. Effect of resistance training on muscular strength and indicators of abdominal adiposity, metabolic risk, and inflammation in postmenopausal women: controlled and randomized clinical trial of efficacy of training volume. Age. 2016;38(2):40. doi: 10.1007/s11357-016-9901-6
  13. Facer-Childs E, Brandstaetter R. The impact of circadian phenotype and time since awakening on diurnal performance in athletes. Current Biology. 2015;25(4):518–522. doi: 10.1016/j.cub.2014.12.036
  14. Marzetti E, Calvani R, Cesari M, et al. Operationalization of the physical frailty & sarcopenia syndrome: rationale and clinical implementation. Transl Med UniSa. 2016;13:29–32.
  15. Corona BT, Rivera JC, Greising SM. Inflammatory and physiological consequences of debridement of fibrous tissue after volumetric muscle loss injury. Clin Transl Sci. 2018;11(2):208–217. doi: 10.1111/cts.12519
  16. Rivera JC, Corona BT. Muscle-related disability following combat injury increases with time. US Army Med Dep J. 2016;30–34.
  17. Greising SM, Warren GL, Southern WM, et al. Early rehabilitation for volumetric muscle loss injury augments endogenous regenerative aspects of muscle strength and oxidative capacity. BMC Musculoskelet Disord. 2018;19(1):173. doi: 10.1186/s12891-018-2095-6
  18. Aurora A, Roe JL, Corona BT, Walters TJ. An acellular biologic scaffold does not regenerate appreciable de novo muscle tissue in rat models of volumetric muscle loss injury. Biomaterials. 2015;67:393–407. doi: 10.1016/j.biomaterials.2015.07.040
  19. Quarta M, Cromie M, Chacon R, et al. Bioengineered constructs combined with exercise enhance stem cell-mediated treatment of volumetric muscle loss. Nat Commun. 2017;8:15613. doi: 10.1038/ncomms15613
  20. Corona BT, Wenke JC, Ward CL. Pathophysiology of volumetric muscle loss injury. Cells Tissues Organs. 2016;202(3-4): 180–188. doi: 10.1159/000443925
  21. Garg K, Ward CL, Rathbone CR, Corona BT. Transplantation of devitalized muscle scaffolds is insufficient for appreciable de novo muscle fiber regeneration after volumetric muscle loss injury. Cell Tissue Res. 2014;358(3):857–873. doi: 10.1007/s00441-014-2006-6
  22. Hurtgen BJ, Ward CL, Garg K, et al. Severe muscle trauma triggers heightened and prolonged local musculoskeletal inflammation and impairs adjacent tibia fracture healing. J Musculoskelet Neuronal Interact. 2016;16(2):122–134.
  23. Sadtler K, Estrellas K, Allen BWDeveloping a pro-regenerative biomaterial scaffold microenvironment requires T-helper 2 cells. Science. 2016;352(6283):366–370. doi: 10.1126/science.aad9272
  24. Lai S, Panarese A, Lawrence R, et al. A murine model of robotic training to evaluate skeletal muscle recovery after injury. Med Sci Sport Exerc. 2017;49(4):840–847. doi: 10.1249/MSS.0000000000001160
  25. Gottardi R, Stoddart MJ. Regenerative rehabilitation of the musculoskeletal system. J Am Acad Orthop Surg. 2018;26(15): e321–e323. doi: 10.5435/JAAOS-D-18-00220
  26. Polli A, Ickmans K, Godderis L, Nijs J. When environment meets genetics: a clinical review of the epigenetics of pain, psychological factors, and physical activity. Arch Phys Med Rehabil. 2019;100(6):1153–1161. doi: 10.1016/j.apmr.2018.09.118
  27. Bianchi M, Renzini A, Adamo S, Moresi V. Coordinated actions of microRNAs with other epigenetic factors regulate skeletal muscle development and adaptation. Int J Mol Sci. 2017;18(4):E840. doi: 10.3390/ijms18040840
  28. Denham J, Marques FZ, O’Brien BJ, Charchar FJ. Exercise: putting action into our epigenome. Sports Med. 2014;44(2):189–209. doi: 10.1007/s40279-013-0114-1
  29. Brown WM. Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis. Br J Sports Med. 2015;49(24):1568–1578. doi: 10.1136/bjsports-2014-094073
  30. Seaborne RA, Strauss J, Cocks M, et al. Human skeletal muscle possesses an epigenetic memory of hypertrophy. Sci Rep. 2018;8(1):1898. doi: 10.1038/s41598-018-20287-3
  31. Horsburgh S, Robson-Ansley P, Adams R, Smith C. Exercise and inflammation-related epigenetic modifications: focus on DNA methylation. Exerc Immunol Rev. 2015;21:26–41.
  32. Kirby TJ, Chaillou T, McCarthy JJ. The role of microRNAs in skeletal muscle health and disease. Front Biosci (Landmark Ed). 2015;20:37–77.
  33. Ogasawara R, Akimoto T, Umeno T, et al. MicroRNA expression profiling in skeletal muscle reveals different regulatory patterns in high and low responders to resistance training. Physiol Genomics. 2016;48(4):320–324. doi: 10.1152/physiolgenomics.00124.2015
  34. Rivas DA, Lessard SJ, Rice NP, et al. Diminished skeletal muscle microRNA expression with aging is associated with attenuated muscle plasticity and inhibition of IGF-1 signaling. FASEB J. 2014;28(9):4133–4147. doi: 10.1096/fj.14-254490
  35. Zacharewicz E, Della Gatta P, Reynolds J, et al. Identification of microRNAs linked to regulators of muscle protein synthesis and regeneration in young and old skeletal muscle. PLoS One. 2014;9(12):e114009. doi: 10.1371/journal.pone.0114009
  36. Zhang T, Birbrair A, Wang ZM, et al. Improved knee extensor strength with resistance training associates with muscle specific miRNAs in older adults. Exp Gerontol. 2015;62(1):7–13. doi: 10.1016/j.exger.2014.12.014
  37. Hu Z, Klein JD, Mitch WE, et al. MicroRNA-29 induces cellular senescence in aging muscle through multiple signaling pathways. Aging. 2014;6(3):160–175. doi: 10.18632/aging.100643
  38. Dias RG, Silva MS, Duarte NE, et al. PBMCs express a transcriptome signature predictor of oxygen uptake responsiveness to endurance exercise training in men. Physiol Genomics. 2015;47(2):13–23. doi: 10.1152/physiolgenomics.00072.2014
  39. Abbasi A, Hauth M, Walter M, et al. Exhaustive exercise modifies different gene expression profiles and pathways in LPS-stimulated and un-stimulated whole blood cultures. Brain Behav Immun. 2014;39:130–141. doi: 10.1016/j.bbi.2013.10.023
  40. Tonevitsky AG, Maltseva DV, Abbasi A, et al. Dynamically regulated miRNA-mRNA networks revealed by exercise. BMC Physiol. 2013;13:9. doi: 10.1186/1472-6793-13-9

Copyright (c) 2021 Sсherbak S.G., Makarenko S.V., Kamilova T.A., Golota A.S., Sarana A.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies