Biomarkers of acute myocardial infarction: diagnostic and prognostic value. Part 2 (Literature review)

Cover Page

Cite item

Abstract

In the second part of the review, we continue the discussion of biomarkers that have a diagnostic and prognostic significance in acute myocardial infarction (AMI). The study of the AMI pathophysiology through the experimental and clinical research contributes to the discovery of new regulatory molecules and pathogenetic mechanisms underlying AMI. At the same time, many molecules involved in the pathogenesis of AMI can be used as effective biomarkers for the diagnosis and prediction of AMI. This article discusses in detail the diagnostic and prognostic value of inflammatory biomarkers of AMI (C-reactive protein, interleukin-6, tumor necrosis factor-alpha, myeloperoxidase, matrix metalloproteinases, soluble form of CD40 ligand, procalcitonin, placental growth factor) and a number of recently discovered new biomarkers of AMI (microribonucleic acids, galectin-3, stimulating growth factor expressed by gene 2, growth differentiation factor 15, proprotein convertase of subtilisin-kexin type 9).

About the authors

Aleksey M. Chaulin

Samara Regional Cardiology Dispensary; Samara State Medical University

Author for correspondence.
Email: alekseymichailovich22976@gmail.com
ORCID iD: 0000-0002-2712-0227
SPIN-code: 1107-0875

MD, assistant of the department

Russian Federation, Samara

Dmitry V. Duplyakov

Samara Regional Cardiology Dispensary; Samara State Medical University

Email: duplyakov@yahoo.com
ORCID iD: 0000-0002-6453-2976
SPIN-code: 5665-9578

MD, PhD, Professor

Russian Federation, Samara

References

  1. Thygesen K, Alpert JS, Jaffe AS, et al. Fourth universal definition of myocardial infarction (2018). Eur Heart J. 2019;40(3):237–269. doi: 10.1093/eurheartj/ehy462.
  2. Prabhu SD, Frangogiannis NG. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ Res. 2016;119(1):91–112. doi: 10.1161/CIRCRESAHA.116.303577.
  3. Nguyen MT, Fernando S, Schwarz N, et al. Inflammation as a therapeutic target in atherosclerosis. J Clin Med. 2019;8(8):1109. doi: 10.3390/jcm8081109.
  4. Puhl SL, Steffens S. Neutrophils in post-myocardial infarction inflammation: damage vs. resolution? Front Cardiovasc Med. 2019;6:25. doi: 10.3389/fcvm.2019.00025.
  5. Чаулин А.М., Дупляков Д.В. Биомаркеры острого инфаркта миокарда: диагностическая и прогностическая ценность. Часть 1 // Клиническая практика. — 2020. — Т.11. — №3. — С. 75–84. [Chaulin AM, Duplyakov DV. Biomarkers of Acute Myocardial Infarction: Diagnostic and Prognostic Value. Part 1. Journal of Clinical Practice. 2020;11(3):75–84. (In Russ).] doi: 10.17816/clinpract34284.
  6. Zebrack JS, Anderson JL, Maycock CA, et al; Intermountain Heart Collaborative (IHC) Study Group. Usefulness of high-sensitivity C-reactive protein in predicting long-term risk of death or acute myocardial infarction in patients with unstable or stable angina pectoris or acute myocardial infarction. Am J Cardiol. 2002;89(2):145–149. doi: 10.1016/s0002-9149(01)02190-7.
  7. Bonaca MP, Morrow DA, Braunwald E, et al. Growth differentiation factor-15 and risk of recurrent events in patients stabilized after acute coronary syndrome: observations from PROVE IT-TIMI 22. Arterioscler Thromb Vasc Biol. 2011;31(1):203–210. doi: 10.1161/ATVBAHA.110.213512.
  8. Lukin A, Novak K, Polić S, Puljak L. Prognostic value of low and moderately elevated C-reactive protein in acute coronary syndrome: a 2-year follow-up study. Med Sci Monit. 2013;19:777–786. doi: 10.12659/MSM.884014.
  9. Wang J, Tang B, Liu X, et al. Increased monomeric CRP levels in acute myocardial infarction: a possible new and specific biomarker for diagnosis and severity assessment of disease. Atherosclerosis. 2015;239(2):343–349. doi: 10.1016/j.atherosclerosis.2015.01.024.
  10. Correia LC, Vasconcelos I, Garcia G, et al. Does C-reactive protein add prognostic value to GRACE score in acute coronary syndromes? Arq Bras Cardiol. 2014;102(5):449–455. doi: 10.5935/abc.20140056.
  11. Forte L, Cimmino G, Loffredo F, et al. C-reactive protein is released in the coronary circulation and causes endothelial dysfunction in patients with acute coronary syndromes. Int J Cardiol. 2011;152(1):7–12. doi: 10.1016/j.ijcard.2011.05.062.
  12. Pearson TA, Mensah GA, Alexander RW, et al. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: A statement for healthcare professionals from the centers for disease control and prevention and the American Heart Association. Circulation. 2003;107(3):499–511. doi: 10.1161/01.cir.0000052939.59093.45.
  13. He LP, Tang XY, Ling WH, et al. Early C-reactive protein in the prediction of long-term outcomes after acute coronary syndromes: a meta-analysis of longitudinal studies. Heart. 2010;96(5):339–346. doi: 10.1136/hrt.2009.174912.
  14. Hamzic-Mehmedbasic A. Inflammatory Cytokines as risk factors for mortality after acute cardiac events. Med Arch. 2016;70(4):252–255. doi: 10.5455/medarh.2016.70.252-255.
  15. Yousuf O, Mohanty BD, Martin SS, et al. High-sensitivity C-reactive protein and cardiovascular disease: a resolute belief or an elusive link? J Am Coll Cardiol. 2013;62(5):397–408. doi: 10.1016/j.jacc.2013.05.016.
  16. Puri R, Nissen SE, Shao M, et al. Impact of baseline lipoprotein and C-reactive protein levels on coronary atheroma regression following high-intensity statin therapy. Am J Cardiol. 2014;114(10):1465–1472. doi: 10.1016/j.amjcard.2014.08.009.
  17. Mueller C. Biomarkers and acute coronary syndromes: an update. Eur Heart J. 2014;35(9):552–556. doi: 10.1093/eurheartj/eht530.
  18. Wang XH, Liu SQ, Wang YL, Jin Y. Correlation of serum high-sensitivity C-reactive protein and interleukin-6 in patients with acute coronary syndrome. Genet Mol Res. 2014;13(2):4260–4266. doi: 10.4238/2014.June.9.11.
  19. Kubková L, Spinar J, Pávková Goldbergová M, et al. [Inflammatory response and C -reactive protein value in patient with acute coronary syndrome. (In Czech)]. Vnitr Lek. 2013;59(11):981–988.
  20. García-Salas JM, Tello-Montoliu A, Manzano-Fernández S, et al. Interleukin-6 as a predictor of cardiovascular events in troponin-negative non-ST elevation acute coronary syndrome patients. Int J Clin Pract. 2014;68(3):294–303. doi: 10.1111/ijcp.12245.
  21. Balkwill F. TNF-alpha in promotion and progression of cancer. Cancer Metastasis Rev. 2006;25(3):409–416. doi: 10.1007/s10555-006-9005-3.
  22. Spinale FG. Bioactive peptide signaling within the myocardial interstitium and the matrix metalloproteinases. Circ Res. 2002;91(12):1082–1084. doi: 10.1161/01.res.0000047874.80576.5a.
  23. Chen Y, Zhang Q, Liao YH, et al. Effect of tumor necrosis factor-α on neutralization of ventricular fibrillation in rats with acute myocardial infarction. Mediators Inflamm. 2011;2011:565238. doi: 10.1155/2011/565238.
  24. Пономарь Е.Г., Сыркин А.Л., Гусев Д.Е., Андреев Д.А. Маркеры воспаления и долгосрочный прогноз у больных с острым коронарным синдромом и стабильной формой ишемической болезни сердца // Кардиология и сердечно-сосудистая хирургия. — 2011. — Т.4. — №6. — С. 10–15. [Ponomar EG, Syrkin AL, Gusev DE, Andreev DA. Inflammation markers and long-term prognosis in patients with acute coronary syndrome and stable coronary heart disease. Russian Journal of Cardiology and Cardiovascular Surgery. 2011;4(6):10–15. (In Russ).]
  25. Cherneva ZV, Denchev SV, Gospodinova MV, et al. Inflammatory cytokines at admission –independent prognostic markers in patients with acute coronary syndrome and hyperglycaemia. Acute Card Care. 2012;14(1):13–19. doi: 10.3109/17482941.2011.655292.
  26. Kafkas N, Venetsanou K, Patsilinakos S, et al. Procalcitonin in acute myocardial infarction. Acute Card Care. 2008;10(1):30–36. doi: 10.1080/17482940701534800.
  27. Buratti T, Ricevuti G, Pechlaner C, et al. Plasma levels of procalcitonin and interleukin-6 in acute myocardial infarction. Inflammation. 2001;25(2):97–100. doi: 10.1023/a:1007166521791.
  28. Remskar M, Horvat M, Hojker S, Noc M. Procalcitonin in patients with acute myocardial infarction. Wien Klin Wochenschr. 2002;114(5-6):205–210.
  29. Kelly D, Khan SQ, Dhillon O, et al. Procalcitonin as a prognostic marker in patients with acute myocardial infarction. Biomarkers. 2010;15(4):325–331. doi: 10.3109/13547501003675084.
  30. Ataoğlu HE, Yilmaz F, Uzunhasan I, et al. Procalcitonin: a novel cardiac marker with prognostic value in acute coronary syndrome. J Int Med Res. 2010;38(1):52–61. doi: 10.1177/147323001003800106.
  31. Anatoliotakis N, Deftereos S, Bouras G, et al. Myeloperoxidase: expressing inflammation and oxidative stress in cardiovascular disease. Curr Top Med Chem. 2013;13(2):115–138. doi: 10.2174/1568026611313020004.
  32. Rudolph V, Goldmann BU, Bös C, et al. Diagnostic value of MPO plasma levels in patients admitted for suspected myocardial infarction. Int J Cardiol. 2011;153(3):267–271. doi: 10.1016/j.ijcard.2010.08.015.
  33. Rudolph V, Keller T, Schulz A, et al. Diagnostic and prognostic performance of myeloperoxidase plasma levels compared with sensitive troponins in patients admitted with acute onset chest pain. Circ Cardiovasc Genet. 2012;5(5):561–568. doi: 10.1161/CIRCGENETICS.111.962290.
  34. Cheng ML, Chen CM, Gu PW, et al. Elevated levels of myeloperoxidase, white blood cell count and 3-chlorotyrosine in Taiwanese patients with acute myocardial infarction. Clin Biochem. 2008;41(7-8):554–560. doi: 10.1016/j.clinbiochem.2008.02.006.
  35. Hochholzer W, Morrow DA, Giugliano RP. Novel biomarkers in cardiovascular disease: update 2010. Am Heart J. 2010;160(4):583–594. doi: 10.1016/j.ahj.2010.06.010.
  36. Ndrepepa G, Braun S, Mehilli J, et al. Myeloperoxidase level in patients with stable coronary artery disease and acute coronary syndromes. Eur J Clin Invest. 2008;38(2):90–96. doi: 10.1111/j.1365-2362.2007.01908.x.
  37. Omran MM, Zahran FM, Kadry M, et al. Role of myeloperoxidase in early diagnosis of acute myocardial infarction in patients admitted with chest pain. J Immunoassay Immunochem. 2018;39(3):337–347. doi: 10.1080/15321819.2018.1492423.
  38. Mittal B, Mishra A, Srivastava A, et al. Matrix metalloproteinases in coronary artery disease. Adv Clin Chem. 2014;64:1–72. doi: 10.1016/b978-0-12-800263-6.00001-x.
  39. Yan AT, Yan RT, Spinale FG, et al. Plasma matrix metalloproteinase-9 level is correlated with left ventricular volumes and ejection fraction in patients with heart failure. J Card Fail. 2006;12(7):514–519. doi: 10.1016/j.cardfail.2006.05.012.
  40. Halade GV, Jin YF, Lindsey ML. Matrix metalloproteinase (MMP)-9: a proximal biomarker for cardiac remodeling and a distal biomarker for inflammation. Pharmacol Ther. 2013;139(1):32–40. doi: 10.1016/j.pharmthera.2013.03.009.
  41. Lahdentausta LS, Paju S, Mäntylä P, et al. Saliva and serum biomarkers in periodontitis and coronary artery disease. J Clin Periodontol. 2018;45(9):1045–1055. doi: 10.1111/jcpe.12976.
  42. Buduneli E, Mäntylä P, Emingil G, et al. Acute myocardial infarction is reflected in salivary matrix metalloproteinase-8 activation level. J Periodontol. 2011;82(5):716–725. doi: 10.1902/jop.2010.100492.
  43. Чаулин А.М., Карслян Л.С., Григорьева Е.В., и др. Клинико-диагностическая ценность кардиомаркеров в биологических жидкостях человека // Кардиология. — 2019. — Т.59 — №11. — С. 66–75. [Chaulin AM, Karslyan LS, Grigoriyeva EV, et al. Clinical and diagnostic value of cardiac markers in human biological fluids. Kardiologiia. 2019;59(11):66–75. (In Russ).] doi: 10.18087/cardio.2019.11.n414.
  44. Antoniades C, Bakogiannis C, Tousoulis D, et al. The CD40/CD40 ligand system: linking inflammation with atherothrombosis. J Am Coll Cardiol. 2009;54(8):669–677. doi: 10.1016/j.jacc.2009.03.076.
  45. Tousoulis D, Androulakis E, Papageorgiou N, et al. From atherosclerosis to acute coronary syndromes: the role of soluble CD40 ligand. Trends Cardiovasc Med. 2010;20(5):153–164. doi: 10.1016/j.tcm.2010.12.004.
  46. Yan JC, Zhu J, Gao L, et al. The effect of elevated serum soluble CD40 ligand on the prognostic value in patients with acute coronary syndromes. Clin Chim Acta. 2004;343(1-2):155–159. doi: 10.1016/j.cccn.2004.01.012.
  47. Varo N, de Lemos JA, Libby P, et al. Soluble CD40L: risk prediction after acute coronary syndromes. Circulation. 2003;108(9):1049–1052. doi: 10.1161/01.CIR.0000088521.04017.13.
  48. Xu BL, Bei CH, Wang R, Lei XX. [Serum sCD40L detection for risk evaluation of acute coronary syndromes. (In Chinese)]. Nan Fang Yi Ke Da Xue Xue Bao. 2006;26(11):1656–1657.
  49. Heeschen C, Dimmeler S, Fichtlscherer S, et al. Prognostic value of placental growth factor in patients with acute chest pain. JAMA. 2004;291(4):435–441. doi: 10.1001/jama.291.4.435.
  50. Marković M, Ignjatović S, Dajak M, Majkić-Singh N. Placental growth factor as short-term predicting biomarker in acute coronary syndrome patients with non-ST elevation myocardial infarction. South Med J. 2010;103(10):982–987. doi: 10.1097/SMJ.0b013e3181eda4ef.
  51. Bui AH, Bonaca MP, Sabatine MS, et al. Elevated concentration of placental growth factor (PlGF) and long term risk in patients with acute coronary syndrome in the PROVE IT-TIMI 22 trial. J Thromb Thrombolysis. 2012;34(2):222–228. doi: 10.1007/s11239-012-0704-z.
  52. Tran TH, Montano MA. Chapter 1. MicroRNAs: mirrors of health and disease. Translating MicroRNAs to the Clinic; 2017. P. 1–15. doi: 10.1016/B978-0-12-800553-8.00001-9.
  53. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–854. doi: 10.1016/0092-8674(93)90529-y.
  54. Chaulin A.M., Duplyakov D.V. MicroRNAs in Atrial Fibrillation: Pathophysiological Aspects and Potential Biomarkers. International Journal of Biomedicine. 2020;10(3):198–205. doi: 10.21103/Article10(3)_RA3.
  55. Sun T, Dong YH, Du W, et al. The role of MicroRNAs in myocardial infarction: from molecular mechanism to clinical application. Int J Mol Sci. 2017;18(4):745. doi: 10.3390/ijms18040745.
  56. Gidlöf O, Smith JG, Miyazu K, et al. Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction. BMC Cardiovasc Disord. 2013;13:12. doi: 10.1186/1471-2261-13-12.
  57. Devaux Y, Mueller M, Haaf P, et al. Diagnostic and prognostic value of circulating microRNAs in patients with acute chest pain. J Intern Med. 2015;277(2):260–271. doi: 10.1111/joim.12183.
  58. Zhu J, Yao K, Wang Q, et al. Circulating miR-181a as a potential novel biomarker for diagnosis of acute myocardial infarction. Cell Physiol Biochem. 2016;40(6):1591–1602. doi: 10.1159/000453209.
  59. Zhang Y, Cheng J, Chen F, et al. Circulating endothelial microparticles and miR-92a in acute myocardial infarction. Biosci Rep. 2017;37(2):BSR20170047. doi: 10.1042/BSR20170047.
  60. Oerlemans MI, Mosterd A, Dekker MS, et al. Early assessment of acute coronary syndromes in the emergency department: the potential diagnostic value of circulating microRNAs. EMBO Mol Med. 2012;4(11):1176–1185. doi: 10.1002/emmm.201201749.
  61. Goretti E, Wagner DR, Devaux Y. miRNAs as biomarkers of myocardial infarction: a step forward towards personalized medicine? Trends Mol Med. 2014;20(12):716–725. doi: 10.1016/j.molmed.2014.10.006.
  62. Schulte C, Molz S, Appelbaum S, et al. miRNA-197 and miRNA-223 predict cardiovascular death in a cohort of patients with symptomatic coronary artery disease. PLoS One. 2015;10(12):e0145930. doi: 10.1371/journal.pone.0145930.
  63. He F, Lv P, Zhao X, et al. Predictive value of circulating miR-328 and miR-134 for acute myocardial infarction. Mol Cell Biochem. 2014;394(1-2):137–144. doi: 10.1007/s11010-014-2089-0.
  64. Lv P, Zhou M, He J, et al. Circulating miR-208b and miR-34a are associated with left ventricular remodeling after acute myocardial infarction. Int J Mol Sci. 2014;15(4):5774–5788. doi: 10.3390/ijms15045774.
  65. Oshikawa K, Kuroiwa K, Tago K, et al. Elevated soluble ST2 protein levels in sera of patients with asthma with an acute exacerbation. Am J Respir Crit Care Med. 2001;164(2):277–281. doi: 10.1164/ajrccm.164.2.2008120.
  66. Barksby HE, Lea SR, Preshaw PM, Taylor JJ. The expanding family of interleukin-1 cytokines and their role in destructive inflammatory disorders. Clin Exp Immunol. 2007;149(2):217–225. doi: 10.1111/j.1365-2249.2007.03441.x.
  67. Weinberg EO, Shimpo M, De Keulenaer GW, et al. Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation. 2002;106(23):2961–2966. doi: 10.1161/01.cir.0000038705.69871.d9.
  68. Shimpo M, Morrow DA, Weinberg EO, et al. Serum levels of the interleukin-1 receptor family member ST2 predict mortality and clinical outcome in acute myocardial infarction. Circulation. 2004;109(18):2186–2190. doi: 10.1161/01.CIR.0000127958.21003.5A.
  69. Kohli P, Bonaca MP, Kakkar R, et al. Role of ST2 in non-ST-elevation acute coronary syndrome in the MERLIN-TIMI 36 trial. Clin Chem. 2012;58(1):257–266. doi: 10.1373/clinchem.2011.173369.
  70. Salvagno GL, Pavan C. Prognostic biomarkers in acute coronary syndrome. Ann Transl Med. 2016;4(13):258. doi: 10.21037/atm.2016.06.36.
  71. Zhang K, Zhang XC, Mi YH, Liu J. Predicting value of serum soluble ST2 and interleukin-33 for risk stratification and prognosis in patients with acute myocardial infarction. Chin Med J (Engl). 2013;126(19):3628–3631.
  72. Kempf T, Eden M, Strelau J, et al. The transforming growth factor-beta superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ Res. 2006;98(3):351–360. doi: 10.1161/01.RES.0000202805.73038.48.
  73. Kempf T, Wollert KC. Growth differentiation factor-15: a new biomarker in cardiovascular disease. Herz. 2009;34(8):594–599. doi: 10.1007/s00059-009-3317-3.
  74. Rohatgi A, Patel P, Das SR, et al. Association of growth differentiation factor-15 with coronary atherosclerosis and mortality in a young, multiethnic population: observations from the Dallas Heart Study. Clin Chem. 2012;58(1):172–182. doi: 10.1373/clinchem.2011.171926.
  75. Bonaca MP, Morrow DA, Braunwald E, et al. Growth differentiation factor-15 and risk of recurrent events in patients stabilized after acute coronary syndrome: observations from PROVE IT-TIMI 22. Arterioscler Thromb Vasc Biol. 2011;31(1):203–210. doi: 10.1161/ATVBAHA.110.213512.
  76. Wollert KC, Kempf T, Lagerqvist B, et al. Growth differentiation factor 15 for risk stratification and selection of an invasive treatment strategy in non ST-elevation acute coronary syndrome. Circulation. 2007;116(14):1540–1548. doi: 10.1161/CIRCULATIONAHA.107.697714.
  77. Adela R, Banerjee SK. GDF-15 as a Target and biomarker for diabetes and cardiovascular diseases: a translational prospective. J Diabetes Res. 2015;2015:490842. doi: 10.1155/2015/490842.
  78. Kempf T, Zarbock A, Widera C, et al. GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice. Nat Med. 2011;17(5):581–588. doi: 10.1038/nm.2354.
  79. Schaub N, Reichlin T, Twerenbold R, et al. Growth differentiation factor-15 in the early diagnosis and risk stratification of patients with acute chest pain. Clin Chem. 2012;58(2):441–449. doi: 10.1373/clinchem.2011.173310.
  80. Kempf T, Björklund E, Olofsson S, et al. Growth-differentiation factor-15 improves risk stratification in ST-segment elevation myocardial infarction. Eur Heart J. 2007;28(23):2858–2865. doi: 10.1093/eurheartj/ehm465.
  81. Sharma UC, Pokharel S, van Brakel TJ, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004;110(19):3121–3128. doi: 10.1161/01.CIR.0000147181.65298.4D.
  82. Van Kimmenade RR, Januzzi JL Jr, Ellinor PT, et al. Utility of amino-terminal pro-brain natriuretic peptide, galectin-3, and apelin for the evaluation of patients with acute heart failure. J Am Coll Cardiol. 2006;48(6):1217–1224. doi: 10.1016/j.jacc.2006.03.061.
  83. Kang Q, Li X, Yang M, et al. Galectin-3 in patients with coronary heart disease and atrial fibrillation. Clin Chim Acta. 2018;478:166–170. doi: 10.1016/j.cca.2017.12.041.
  84. Bivona G, Bellia C, Lo Sasso B, et al. Short-term changes in Gal 3 circulating levels after acute myocardial infarction. Arch Med Res. 2016;47(7):521–525. doi: 10.1016/j.arcmed.2016.12.009.
  85. González GE, Cassaglia P, Noli Truant S, et al. Galectin-3 is essential for early wound healing and ventricular remodeling after myocardial infarction in mice. Int J Cardiol. 2014;176(3):1423–1425. doi: 10.1016/j.ijcard.2014.08.011.
  86. Lisowska A, Knapp M, Tycińska A, et al. Predictive value of Galectin-3 for the occurrence of coronary artery disease and prognosis after myocardial infarction and its association with carotid IMT values in these patients: A mid-term prospective cohort study. Atherosclerosis. 2016;246:309–317. doi: 10.1016/j.atherosclerosis.2016.01.022.
  87. Wang A, Zhong C, Zhu Z, et al. Serum Galectin-3 and poor outcomes among patients with acute ischemic stroke. Stroke. 2018;49(1):211–214. doi: 10.1161/STROKEAHA.117.019084.
  88. Чаулин А.М., Дупляков Д.В. PCSK-9: современные представления о биологической роли и возможности использования в качестве диагностического маркера сердечно-сосудистых заболеваний. Часть 1 // Кардиология: новости, мнения, обучение. — 2019. — Т.7 — №2. — С. 45–57. [Chaulin AM, Duplyakov DV. PCSK-9: modern views about biological role and possibilities of use as a diagnostic marker for cardiovascular diseases. Part 1. Cardiology: News, Opinions, Training. 2019;7(2):45–57. (In Russ).] doi: 10.24411/2309-1908-2019-12005.
  89. Чаулин А.М., Дупляков Д.В. PCSK-9: современные представления о биологической роли и возможности использования в качестве диагностического маркера сердечно-сосудистых заболеваний. Часть 2 // Кардиология: новости, мнения, обучение. — 2019. — Т.7 — №4. — С. 24–35. [Chaulin AM, Duplyakov DV. PCSK-9: modern views about biological role and possibilities of use as a diagnostic marker for cardiovascular diseases. Part 2. Cardiology: News, Opinions, Training. 2019;7(4):24–35. (In Russ).] doi: 10.24411/2309-1908-2019-14004.
  90. Cesaro A, Bianconi V, Gragnano F, et al. Beyond cholesterol metabolism: the pleiotropic effects of proprotein convertase subtilisin/kexin type 9 (PCSK9). Genetics, mutations, expression, and perspective for long-term inhibition. Biofactors. 2020;46(3):367–380. doi: 10.1002/biof.1619.
  91. Li S, Zhang Y, Xu RX, et al. Proprotein convertase subtilisin-kexin type 9 as a biomarker for the severity of coronary artery disease. Ann Med. 2015;47(5):386–393. doi: 10.3109/07853890.2015.1042908.
  92. Almontashiri NA, Vilmundarson RO, Ghasemzadeh N, et al. Plasma PCSK9 levels are elevated with acute myocardial infarction in two independent retrospective angiographic studies. PLoS One. 2014;9(9):e106294. doi: 10.1371/journal.pone.0106294.
  93. Gao Y, Qiu Y, Wu J, et al. Acute-Phase plasma PCSK9 levels and recurrent cardiovascular events in a Chinese acute myocardial infarction cohort. Cardiology. 2018;141(2):88–97. doi: 10.1159/000493785.
  94. Zhang Z, Wei TF, Zhao B, et al. Sex differences associated with circulating PCSK9 in patients presenting with acute myocardial infarction. Sci Rep. 2019;9(1):3113. doi: 10.1038/s41598-018-35773-x.
  95. Miñana G, Núñez J, Bayés-Genís A, et al. Role of PCSK9 in the course of ejection fraction change after ST-segment elevation myocardial infarction: a pilot study. ESC Heart Fail. 2020;7(1):117–122. doi: 10.1002/ehf2.12533.

Copyright (c) 2020 Chaulin A.M., Duplyakov D.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies