Concerning the neurotropy and neuroinvasiveness of coronaviruses

Cover Page

Cite item

Full Text

Abstract

At the present moment of COVID-19 development, we may propose some preliminary thoughts on its direct and distant sequels. In our review we suggest that the novel SARS-CoV-2 virus, as well as other members of the Coronaviridae family, may possess neurotropic and neuroinvasive features; they may enter the nervous system via the intranasal way and directly infect the human brain, causing lesions in the brainstem nuclei of the cardiorespiratory center. We assume that such a lesion may worsen the respiratory distress and lead to the respiratory failure in some patients. Taking this into consideration, immunomodulating and antiviral drugs that utilize the intranasal way of delivery may help in the prevention and treatment of COVID-19 in those contacting with COVID-19-infected patients. All these proposals are preliminary and need an in-depth investigation involving randomized experimental, clinical and pathomorphological studies.

About the authors

Vladislav B. Voitenkov

Pediatric Research and Clinical Center for Infectious Diseases; Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies

Author for correspondence.
Email: vlad203@inbox.ru
ORCID iD: 0000-0003-0448-7402

MD, PhD

Russian Federation, St-Petersburg; Moscow

Eugene V. Ekusheva

Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies; Federal State Autonomous Educational Institution of Higher Professional Education Belgorod State National Research University

Email: ekushevaev@mail.ru
ORCID iD: 0000-0002-3638-6094
SPIN-code: 8828-0015

MD, PhD, Professor

Russian Federation, Moscow; Belgorod

References

  1. Lai CC, Shih TP, Ko WC, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents. 2020;55(3):105924. doi: 10.1016/j.ijantimicag.2020.105924.
  2. Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol. 2020;92(6):552–555. doi: 10.1002/jmv.25728.
  3. Al-Tawfiq JA. Viral loads of SARS-CoV, MERS-CoV and SARS-CoV-2 in respiratory specimens: What have we learned? Travel Med Infect Dis. 2020;34:101629. doi: 10.1016/j.tmaid.2020.101629.
  4. Gralinski LE, Menachery VD. Return of the Coronavirus: 2019-nCoV. Viruses. 2020;12(2):135. doi: 10.3390/v12020135.
  5. Yin Y, Wunderink RG. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology. 2018;23(2):130–137. doi: 10.1111/resp.13196.
  6. Song Z, Xu Y, Bao L, et al. From SARS to MERS, Thrusting Coronaviruses into the Spotlight. Viruses. 2019;11(1):59. doi: 10.3390/v11010059.
  7. Hamming I, Timens W, Bulthuis ML, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631–637. doi: 10.1002/path.1570.
  8. Boonacker E, van Noorden CJ. The multifunctional or moonlighting protein CD26/DPPIV. Eur J Cell Biol. 2003;82(2):53–73. doi: 10.1078/0171-9335-00302.
  9. Ding Y, Wang H, Shen H, Li Z. The clinical pathology of severe acute respiratorysyndrome (SARS): a report from China. J Pathol. 2003;200(3):282–289. doi: 10.1002/path.1440.
  10. To KF, Lo AW. Exploring the pathogenesis of severe acute respiratory syndrome (SARS): the tissue distribution of the coronavirus (SARS-CoV) and its putative receptor, angiotensin-converting enzyme 2 (ACE2). J Pathol. 2004;203(3):740–743. doi: 10.1002/path.1597.
  11. Yuan Y, Cao D, Zhang Y, et al. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. Nat Commun. 2017;8:15092. doi: 10.1038/ncomms15092.
  12. Yu F, Du L, Ojcius DM, et al. Measures for diagnosing and treating infections by a novel coronavirus responsible for a pneumonia outbreak originating in Wuhan, China. Microbes Infect. 2020;22(2):74–79. doi: 10.1016/j.micinf.2020.01.003.
  13. Netland J, Meyerholz DK, Moore S, et al. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008;82(15):7264–7275. doi: 10.1128/JVI.00737-08.
  14. Desforges M, Le Coupanec А, Dubeau P, et al. Human Coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system? Viruses. 2019;12(1):14. doi: 10.3390/v12010014.
  15. Atluri, VS, Hidalgo M, Samikkannu T, et al. Effect of human immunodeficiency virus on blood-brain barrier integrity and function: An update. Front Cell Neurosci. 2015;9:212. doi: 10.3389/fncel.2015.00212.
  16. Neal JW. Flaviviruses are neurotropic, but how do they invade the CNS? J Infect. 2014;69(3):203–215. doi: 10.1016/j.jinf.2014.05.010.
  17. Couderc T, Chretien F, Schilte C, et al. A mouse model for Chikungunya: Young age and inecient type-I interferon signaling are risk factors for severe disease. PLoS Pathog. 2008;4(2):e29. doi: 10.1371/journal.ppat.0040029.
  18. Войтенков В.Б., Екушева Е.В., Скрипченко Н.В., и др. Вирус Зика и поражение нервной системы // Инфекционные болезни. — 2019. — Т.17. — №1. — С. 153–156. [Voitenkov VB, Ekusheva EV, Skripchenko NV. Zika virus and nervous system involvement. Infekcionnye bolezni. 2019;17(1):153–156. (In Russ).] doi: 10.20953/1729-9225-2019-1-153-156.
  19. Schneider H, Weber CE, Schoeller J, Steinmann U. Chemotaxis of T-cells after infection of human choroid plexus papilloma cells with Echovirus 30 in an in vitro model of the blood-cerebrospinal fluid barrier. Virus Res. 2012;170(1-2):66–74. doi: 10.1016/j.virusres.2012.08.019.
  20. Choi SM, Xie H, Campbell AP, Kuypers J. Influenza viral RNA detection in blood as a marker to predict disease severity in hematopoietic cell transplant recipients. J Infect Dis. 2012;206(12):1872–1877. doi: 10.1093/infdis/jis610.
  21. Imamura T, Suzuki A, Lupisan S, et al. Detection of enterovirus 68 in serum from pediatric patients with pneumonia and their clinical outcomes. Influenza Other Respir Viruses. 2014;8(1):21–24. doi: 10.1111/irv.12206.
  22. Koyuncu OO, Hogue IB, Enquist LW. Virus infections in the nervous system. Cell Host Microbe. 2013;13(4):379–393. doi: 10.1016/j.chom.2013.03.010.
  23. Mori I. Transolfactory neuroinvasion by viruses threatens the human brain. Acta Virol. 2015;59(4):338–349. doi: 10.4149/av_2015_04_338.
  24. Lochhead JJ, Kellohen KL, Ronaldson PT, Davis TP. Distribution of insulin in trigeminal nerve and brain after intranasal administration. Sci Rep. 2019;9(1):2621. doi: 10.1038/s41598-019-39191-5.
  25. Bohmwald K, Galvez NM, Rios M, Kalergis AM. Neurologic alterations due to respiratory virus infections. Front Cell Neurosci. 2018;12:386. doi: 10.3389/fncel.2018.00386.
  26. Driessen AK, Farrell MJ, Mazzone SB, McGovern AE. Multiple neural circuits mediating airway sensations: Recent advances in the neurobiology of the urge-to-cough. Respir Physiol Neurobiol. 2016;226:115–120. doi: 10.1016/j.resp.2015.09.017.
  27. Audrit KJ, Delventhal L, Aydin O, Nassenstein C. The nervous system of airways and its remodeling ininflammatory lung diseases. Cell Tissue Res. 2017;367(3):571–590. doi: 10.1007/s00441-016-2559-7.
  28. Wheeler DL, Sariol A, Meyerholz DK, Perlman S. Microglia are required for protection against lethal coronavirus encephalitis in mice. J Clin Invest. 2018;128(3):931–943. doi: 10.1172/JCI97229.
  29. Atkinson JR, Bergmann CC. Protective humoral immunity in the central nervous system requires peripheral CD19-Dependent germinal center formation following Coronavirus encephalomyelitis. J Virol. 2017;91(23):pii: e01352-17. doi: 10.1128/JVI.01352-17.
  30. Mora-Díaz JC, Piñeyro PE, Houston E, et al. Porcine hemagglutinating encephalomyelitis virus: a review. Front Vet Sci. 2019;6:53. doi: 10.3389/fvets.2019.00053.
  31. Jaimes JA, Millet JK, Stout AE, et al. A tale of two viruses: the distinct spike glycoproteins of feline Coronaviruses. Viruses. 2020;12(1):83. doi: 10.3390/v12010083.
  32. Zalinger ZB, Elliott R, Weiss SR. Role of the inflammasome-related cytokines Il-1 and Il-18 during infection with murine coronavirus. J Neurovirol. 2017;23(6):845–854. doi: 10.1007/s13365-017-0574-4.
  33. Li K, Wohlford-Lenane C, Perlman S, et al. Middle east respiratory syndrome Coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4. J Infect Dis. 2016;213(5):712–722. doi: 10.1093/infdis/jiv499.
  34. McCray PB Jr, Pewe L, Wohlford-Lenane C, Hickey M. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol. 2007;81(2):813–821. doi: 10.1128/JVI.02012-06.
  35. Dubé M, Le Coupanec A, Wong AH, Rini JM. Axonal transport enables neuron-to-neuron propagation of human Coronavirus OC43. J Virol. 2018;92(17):e00404-18. doi: 10.1128/JVI.00404-18.
  36. Li Z, He W, Lan Y, et al. The evidence of porcine hemagglutinating encephalomyelitis virus induced nonsuppurative encephalitis as the cause of death in piglets. Peer J. 2016;4:e2443. doi: 10.7717/peerj.2443.
  37. Matsuda K, Park CH, Sunden Y, et al. The vagus nerve is one route of transneural invasion for intranasally inoculated influenza a virus in mice. Vet Pathol. 2004;41(2):101–107. doi: 10.1354/vp.41-2-101.
  38. Raux H, Flamand A, Blondel D. Interaction of the rabies virus P protein with the LC8 dynein light chain. J Virol. 2000;74(21):10212–10216. doi: 10.1128/jvi.74.21.10212-10216.2000.
  39. Morfopoulou S, Brown JR, Davies EG, et al. Human coronavirus OC43 associated with fatal encephalitis. N Engl J Med. 2016;375(5):497– 498. doi: 10.1056/NEJMc1509458.
  40. Nilsson A, Edner N, Albert J, Ternhag A. Fatal encephalitis associated with coronavirus OC43 in an immunocompromised child. Infect Dis (Lond). 2020:52(6):419–422. doi: 10.1080/23744235.2020.1729403.
  41. Turgay C, Emine T, Ozlem K, et al. A rare cause of acute flaccid paralysis: human coronaviruses. J Pediatr Neurosci. 2015;10(3):280–281. doi: 10.4103/1817-1745.165716.
  42. Arbour N, Day R, Newcombe J, Talbot PJ. Neuroinvasion by human respiratory coronaviruses. J Virol. 2000;74(19):8913–8921. doi: 10.1128/jvi.74.19.8913-8921.2000.
  43. Lau SK, Woo PC, Yip CC, et al. Coronavirus HKU1 and other coronavirus infections in Hong Kong. J Clin Microbiol. 2006;44(6):2063–2071. doi: 10.1128/JCM.02614-05.
  44. Lau KK, Yu WC, Chu CM, et al. Possible central nervous system infection by SARS coronavirus. Emerg Infect Dis. 2004;10(2):342–344. doi: 10.3201/eid1002.030638.
  45. Lang ZW, Zhang LJ, Zhang SJ, Meng X. A clinicopathological study of three cases of severeacute respiratory syndrome (SARS). Pathology. 2003;35(6):526–531. doi: 10.1080/00313020310001619118.
  46. Gu J, Gong EC, Zhang B, Zheng J. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005;202(3):415– 424. doi: 10.1084/jem.20050828.
  47. Jiang G, Korteweg С. Pathology and pathogenesis of severe acute respiratory syndrome. Am J Pathol. 2007;170(4):1136–1147. doi: 10.2353/ajpath.2007.061088.
  48. Algahtani H, Subahi A, Shirah B. Neurological complications of middle east respiratory Syndrome Coronavirus: a report of two cases and review of the literature. Case Rep Neurol Med. 2016;2016:3502683. doi: 10.1155/2016/3502683.
  49. Arabi YM, Harthi A. Severe neurologic syndrome associated with Middle East respiratory syndrome corona virus (MERS-CoV). Infection. 2015;43(4):495–501. doi: 10.1007/s15010-015-0720-y.
  50. Li Y, Li H, Fan R, et al. Coronavirus infections in the central nervous system and respiratory tract show distinct features in hospitalized children. Intervirology. 2016;59(3):163–169. doi: 10.1159/000453066.
  51. Savarin C, Dutta R, Bergmann CC. Distinct gene profiles of bone marrow-derived macrophages and microglia during neurotropic Coronavirus-Induced demyelination. Front Immunol. 2018;9:1325. doi: 10.3389/fimmu.2018.01325.
  52. Kim JE, Heo JH, Kim HO, Song SH. Neurological complications during treatment of middle east respiratory syndrome. J Clin Neurol. 2017;13(3):227–233. doi: 10.3988/jcn.2017.13.3.227.
  53. Никифоров В.В., Суранова Т.Г., Миронов А.Ю., Забозлаев Ф.Г. Новая коронавирусная инфекция (COVID-19): этиология, эпидемиология, клиника, диагностика, лечение и профилактика. Учебно-методическое пособие. — М., 2020. — 48 с. [Nikiforov VV, Suranova TG, Mironov AYu, Zabozlayev FG. Novaya koronavirusnaya infektsiya (COVID-19): etiologiya, epidemiologiya, klinika, diagnostika, lecheniye i profilaktika. Uchebno-metodicheskoye posobiye. Moscow; 2020. 48 p. (In Russ).]
  54. Ekusheva EV, Voitenkov VB. Anosmia and ageusia as the early signs in patients with laboratory confirmed COVID-19 infection. Eur J Neurol. 2020;27 (Suppl. 1):1035.
  55. Solomon IH, Normandin E, Bhattacharyya S, et al. Neuropathological Features of Covid-19. N Engl J Med. 2020:NEJMc2019373. doi: 10.1056/NEJMc2019373.
  56. Weyhern C, Kaufmann I, Neff F, Kremer M. Early evidence of pronounced brain involvement in fatal COVID-19 outcomes. Lancet. 2020;395(10241):e109. doi: 10.1016/S0140-6736(20)31282-4.

Copyright (c) 2020 Voitenkov V.B., Ekusheva E.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies