The nervous system damage in COVID-19

Cover Page

Cite item

Full Text

Abstract

Based on the available publications, the article systematizes the data on the forms of damage to the central nervous system in СOVID-19 patients. We discuss the diagnostic approaches (laboratory, instrumental and radiological) and the therapeutic tactics for different nosological forms from cranial mononeuropathies to acute inflammatory Guillain-Barré polyneuropathy and severe damage to the brain and spinal cord with acute hemorrhagic necrotizing encephalopathy and myelopathies. Pathogenetically, neurological disorders in COVID-19 can be caused by a “cytokine storm”, hypoxemia, homeostasis disorders (encephalopathy of critical illness), neurotropic and neurovirulence features of SARS-CoV-2 (isolated damage to the cranial nerves, focal and diffuse lesions of the central nervous system), and mixed effects of these factors. COVID-19 affects the course of chronic neurological diseases, especially related with neuroimmune disorders. All of the above determines the need for a multidisciplinary approach to the treatment of COVID-19 and its complications with the mandatory participation of a neurologist.

About the authors

Vladimir V. Belopasov

Astrakhan State Medical University

Author for correspondence.
Email: belopasov@yandex.ru
ORCID iD: 0000-0003-0458-0703
SPIN-code: 6089-1321

MD, PhD, Professor

Russian Federation, Astrakhan

Yassine Yachou

Astrakhan State Medical University

Email: yassine.yachou@gmail.com
ORCID iD: 0000-0003-3173-3007

Student

Russian Federation, Astrakhan

Ekaterina M. Samoilova

Federal Scientific and Clinical Center of Specialized Types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia

Email: samoyket@gmail.com
ORCID iD: 0000-0002-0485-6581
SPIN-code: 3014-6243

MD

Russian Federation, Moscow

Vladimir P. Baklaushev

Federal Scientific and Clinical Center of Specialized Types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia

Email: baklaushev.vp@fnkc-fmba.ru
ORCID iD: 0000-0003-1039-4245
SPIN-code: 3968-2971
https://fnkc-fmba.ru/about/komanda-upravleniya/

MD, PhD

Russian Federation, Moscow

References

  1. Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020;77(6):1–9. doi: 10.1001/jamaneurol.2020.1127.
  2. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5.
  3. Dalakas MC. Guillain-Barré syndrome: The first documented COVID-19-triggered autoimmu-ne neurologic disease: More to come with myositis in the offing. Neurol Neuroimmunol Neuroinflamm. 2020;7(5):e781. doi: 10.1212/NXI.0000000000000781.
  4. Sellner J, Taba P, Öztürk S, Helbok R. The need for neurologists in the care of COVID-19 patients. Eur J Neurol. 2020;10.1111/ene.14257. doi: 10.1111/ene.14257.
  5. Jin M, Tong Q. Rhabdomyolysis as potential late complication associated with COVID-19. Emerg Infect Dis. 2020;26(7):1618–1620. doi: 10.3201/eid2607.200445.
  6. Román GC, Spencer PS, Reis J, et al. The neurology of COVID-19 revisited: a proposal from the environmental neurology specialty group of the world federation of neurology to implement international neurological registries. J Neurol Sci. 2020;414:116884. doi: 10.1016/j.jns.2020.116884.
  7. Sepehrinezhad A, Shahbazi A, Negah SS. COVID-19 virus may have neuroinvasive potential and cause neurological complications: a perspective review. J Neurovirol. 2020;26(3):324-329. doi: 10.1007/s13365-020-00851-2.
  8. Robinson CP, Busl KM. Neurologic manifestations of severe respiratory viral contagions. Crit Care Explor. 2020;2(4):e0107. doi: 10.1097/CCE.0000000000000107.
  9. Vonck K, Garrez I, De Herdt V, et al. Neurological manifestations and neuroinvasive mechanisms of the severe acute respiratory syndrome Coronavirus Type 2. Eur J Neurol. 2020;10.1111/ene.14329. doi: 10.1111/ene.14329.
  10. Tsai ST, Lu MK, San S, Tsai CH. The Neurologic Manifestations of Coronavirus Disea-se 2019 Pandemic: A Systemic Review. Front Neurol. 2020;11:498. doi: 10.33 9/fneur.2020.00 498.
  11. Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–1720. doi: 10.1056/NEJMoa2002032.
  12. Giacomelli A, Pezzati L, Conti F, et al. Self-reported olfactory and taste disorders in SARS-CoV-2 patients: a cross sectional study. Clin Infect Dis. 2020;ciaa330. doi: https://doi.org/10.1093/cid/ciaa330.
  13. Liguori C, Pierantozzi M, Spanetta M, et al. Subjective neurological symptoms frequently occur in patients with SARS-CoV2 infection. Brain Behav Immun. 2020;S0889-1591(20)30876-X. doi: 10.1016/j.bbi.2020.05.037.
  14. Rogers JP, Chesney E, Oliver D, et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psychiatry. 2020;7(7):611–627. doi: 10.1016/S2215-0366(20)30203-0.
  15. Мосолов С.Н. Проблемы психического здоровья в условиях пандемии COVID-19 // Журнал неврологии и психиатрии им. С.С. Корсакова. — 2020. — Т.120. — №5. — С. 7–15. [Mosolov SN. Problemy psikhicheskogo zdorov’ya v usloviyakh pandemii COVID-19. S.S. Korsakov Journal of Neurology and Psychiatry. 2020;120(5):7–15. (In Russ).] https://doi.org/10.17116/jnevro20201200517
  16. Troyer EA, Kohn JN, Hong S. Are we facing a crashing wave of neuropsychiatric sequelae of COVID-19? Neuropsychiatric symptoms and potential immunologic mechanisms. Brain Behav Immun. 2020;87:34–39. doi: 10.1016/j.bbi.2020.04.027.
  17. Galea S, N. The mental health consequences of COVID-19 and physical distancing. The need for prevention and early intervention. JAMA Intern Med. 2020. doi: 10.1001/jamainternmed.2020.1562.
  18. Colizzi M, Bortoletto R, Silvestri M, Mondin F. Medically unexplained symptoms in the times of Covid-19 pandemic: A case-report. Brain Behav Immun Health. 2020;5:100073. doi: 10.1016/ j.bbih.2020.100073.
  19. Asadi-Pooya AA, Simani L.Central nervous system manifestations of COVID-19: A systematic review. J Neurol Sci. 2020;413:116832. doi: 10.1016/j.jns.2020.116832.
  20. Ahmad I, Rathore FA. Neurological manifestations and complications of COVID-19: A literatu-re review. J Clin Neurosci. 2020;77:8–12. doi: 10.1016/j.jocn.2020.05.017.
  21. Li Y, Wang M, Zhou Y, et al. Acute cerebrovascular disease following COVID-19: a single, retrospective, observational study. Lancet. 2020. doi: 10.2139/ssrn.3550025.
  22. Mahammedi A, Saba L, Vagal A, et al. Imaging in neurological disease of hospitalized COVID-19 patients. An Italian multicenter retrospective observational study. Radiology. 2020:201933. doi: 10.1148/radiol.2020201933.
  23. Guillan M, Villacieros-Alvarez J, Bellido S, Perez-Jorge Peremarch C. et al. Unusual simultaneous cerebral infarcts in multiple arterial territories in a COVID-19 patient. J.Thromb Res. 2020 Jun 9;193:107-109. doi: 10.1016/j.thromres.2020.06.015
  24. Lu L, Xiong W, Liu D, Liu J. et al. Newonset acute symptomatic seizure and risk in Coronavirus Diseases 2019: A retrospective multicenter study. Epilepsia. 2020;61(6):e49–e53. doi: 10.1111/ epi.16524.
  25. Le Guennec L, Devianne J, Jalin L, Cao A, Galanaud D, Navarro V, Boutolleau D, Rohaut B, Weiss N, Demeret S. Orbitofrontal involvement in a neuroCOVID-19 patient. Epilepsia. 2020. doi: 10.1111/epi.16612.
  26. Fasano A, Cavallieri F, Canali E, Valzania F. First motor seizure as presenting symptom of SARS-CoV-2 infection. Neurol Sci. 2020:1-3. doi: 10.1007/s10072-020-04460.
  27. Zubair AS, McAlpine LS, Gardin T, et al. Neuropathogenesis and neurologic manifestations of the Coronaviruses in the age of Coronavirus disease 2019: A review. JAMA Neurol. 2020. doi: 10.1001/jamaneurol.2020.2065.
  28. Elgamasy S, Kamel MG, Ghozy S, et al. First case of focal epilepsy associated with sars-coronavirus-2. J Med Virol. 2020;10.1002/jmv.26113. doi: 10.1002/jmv.26113.
  29. Hepburn M, Mullaguri N, George P, et al. Acute symptomatic seizures in critically Ill patients with COVID-19: Is there an association? Neurocrit Care. 2020;1–5. doi: 10.1007/s12028-020-01006-1.
  30. Kuroda N. Epilepsy and COVID-19: Associations and important considerations. Epilepsy Behav. 2020;108:107122. doi: 10.1016/j.yebeh.2020.107122.
  31. Карлов В.А., Бурд С.Г., Лебедева А.В., и др. Эпилепсия и COVID-19. Тактика и лечение. Рекомендации Российской противоэпилептической лиги // Эпилепсия и пароксизмальные состояния. — 2020. — Т.12. — №1. — С. 84–88. [Karlov VA, Burd SG, Lebedeva AV, et al. Epilepsy and COVID-19. Tactic and treatment. Recommendations of Russian League Against Epilepsy. Epilepsy and paroxysmal conditions. 2020;12(1):84–88. (In Russ).] doi: 10.17749/2077-8333.2020.12.1.84-88.
  32. Karimi N, Sharifi Razavi A, Rouhani N. Frequent convulsive seizures in an adult patient with COVID-19: A case report. Iran Red Crescent Med J. 2020;22(3):e102828. doi: 10.5812/ircmj.102828.
  33. Холин A.A., Заваденко Н.Н., Холина Е.A. Международные рекомендации по ведению пациентов с эпилепсией в условиях пандемии COVID-19 (по материалам ILAE) // РМЖ. Неврология. — 2020. — №8. — С. 2–4. [Kholin AA, Zavadenko NN, Kholina EA. Mezhdunarodnyye rekomendatsii po vedeniyu patsiyentov s epilepsiyey v usloviyakh pandemii COVID-19 (po materialam ILAE). Russian Medical Journal. 2020;(8):2–4. (In Russ).]
  34. Moriguchi T, Harii N, Goto J, et al. A first case of menin-getis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis. 2020;94:55–58. doi: 10.1016/j.ijid.2020.03.062.
  35. Ye M, Ren Y, Lv T. Encephalitis as a clinical manifestation of COVID-19. Brain Behav Immun. 2020;S0889-1591(20)30465-7. doi: 10.1016/j.bbi.2020.04.017.
  36. Bernard-Valnet R, Pizzarotti B, Anichini A, et al. Two patients with acute meningoencephalitis concomitant to SARS-CoV-2 infection. Eur J Neurol. 2020;10.1111/ene. doi: 10.1111/ene.14298.
  37. Dogan L, Kaya D, Sarikaya T, et al. Plasmapheresis treatment in COVID-19-related autoimmune meningoencephalitis: case series. Brain Behav Immun. 2020;87:155–158. doi: 10.1016/j.bbi.2020.05.022.
  38. Duong L, Xu P, Liu A. Meningoencephalitis without respiratory failure in a young female patient with COVID-19 infection in downtown Los Angeles, early april 2020. Brain Behav Immun. 2020;7:33. doi: 10.1016/j.bbi.2020.04.024.
  39. Lovati C, Osio M, Pantoni L. Diagnosing Herpes simplex-1 Encephalitis at the Time of COVID-19 pandemic. Neurol Sci. 2020;41(6):1361–1364. doi: 10.1007/s10072-020-04461-y.
  40. Lu X, Zhang L, Du H, et al. SARS-CoV-2 infection in children. N Engl J Med. 2020:382(17):1663–1665. doi: 10.1056/NEJMc2005073.
  41. McAbee GN, Brosqol Y, Pavlakis S, et al. Encephalitis assоciated with COVID-19 infection in 11 year-old child. Pediatric Neurology. 2020. doi: 10.1016/j.pediatrneurol.2020.04.013.
  42. Perchetti GA, Nalla AK, Huang M-L, et al.Validation of SARS-CoV-2 detection across multiple specimen types. J Clin Virol. 2020;128:104438. doi: 10.1016/j.jcv.2020.104438.
  43. Al-Olama M, Rashid A, Garozzo D. COVID-19-associated Meningoencephalitis complicated with intracranial hemorrhage: a case report. Acta Neurochir (Wien). 2020;162(7):1495–1499. doi: 10.1007/s00701-020-04402-w.
  44. Gu J, Gong E, Zhang B, et al. Multiple organ infection and the pathogenesis of SARS. J Exp Med. 2005;202(3):415–424. doi: 10.1084/jem.20050828.
  45. Wu Y, Xu X, Chen Z, et al. Nervous system involvement after infection with COVID-19 and other Coronaviruses. Brain Behav Immun. 2020;87:18–22. doi: 10.1016/j.bbi.2020.03.031.
  46. Hung EC, Chim SS, Chan PK, et al. Detection of SARS coronavirus RNA in the cerebrospinal fluid of a patient with severe acute respiratory syndrome. Clin Chem. 2003;49(12):2108–2109. doi: 10.1373/clinchem.2003.025437.
  47. Zhang QL, Ding YQ, Hou JL, et al. Detection of severe acute respiratory syndrome (SARS)-associated coronavirus RNA in autopsy tissues with in situ hybridization. Di Yi Jun Yi Da Xue Xue Bao. 2003;23(11):1125–1127.
  48. Pilotto A, Odolini S, Masciocchi SS, et al. Steroid-responsive Encephalitis in Covid-19 disease. Ann Neurol. 2020;10.1002/ana.25783. doi: 10.1002/ana.25783.
  49. Arbour N, Day R, Newcombe J, Talbot PJ. Neuroinvasion by human respiratory Coronaviruses. J Virol. 2000;74(19):8913–8921. doi: 10.1128/jvi.74.19.8913-8921.2000.
  50. Lau K-K, Yu W-C, Chu C-M, et al. Possible central nervous system infection by SARS coronavirus. Emerg Infect Dis. 2004;10(2):342–344. doi: 10.3201/eid1002.030638.
  51. Tsai LK, Hsieh ST, Chang YC. Neurological manifestations in severe acute respiratory syndrome. Acta Neurol Taiwan. 2005;14(3):113–119.
  52. Panariello A, Bassetti R, Radice A, et al. Anti-NMDA receptor encepha-litis in a psychiatric Covid-19 patient: a case report. Brain Behav Immun. 2020;87:179–181. doi: 10.1016/j.bbi.2020.05.054.
  53. Yashavantha Rao HC, Jayabaskaran C. The emergence of a novel Coronavirus (SARS-CoV-2) disease and their neuroinvasive propensity may affect in COVID-19 patients. J Med Virol. 2020;92(7):786–790. doi: 10.1002/jmv.25918.
  54. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–1034. doi: 10.1016/S0140-6736(20)30628-0.
  55. Hoshino A, Saitoh M, Oka A, et al. Epidemiology of acute ence-phalopathy in japan, with emphasis on the association of viruses and syndromes. Brain Dev. 2012;34(5):337–343. doi: 10.1016/j.braindev.2011.07.012.
  56. Bohmwald K, Galvez N, Ríos M, Kalergis AM. Neurologic alterations due to respiratory virus infections. Front Cell Neurosci. 2018;12:386. doi: 10.3389/fncel.2018.00386.
  57. Чучин М.Ю. Острая некротическая энцефалопатия при вирусной инфекции // Детская больница. — 2012. — №1. — С. 23–28. [Chuchin MYu. Acute necrotizing encephalopathy after viral infection. Detskaya bol’nitsa. 2012;(1):23–28. (In Russ).]
  58. Mizuguchi M, Yamanouchi H, Ichiyama T, Shiomi M. Acute encephalopathy associated with influenza and otherviral infections. Acta Neurol Scand. 2007;115(4Suppl):45–56. doi: 10.1111/1600-0404.2007.00809.x.
  59. Araujo R, Gouveia P, Fineza I. Bilateral thalamic lesions in acute necrotizing encepha-lopathy due to H1N1 infection visual diagnosis. Pediatr Neurol. 2016;65:96–97. doi: 10.1016/j.pediatrneurol.2016.08.008.
  60. Meijer WJ, Linn FH, Wensing AM, et al. Acute influenza virus-associated encephalitis and encephalopathy in adults: a challenging diagnosis. JMM Case Reports. 2016;3(6):e005076. doi: 10.1099/jmmcr.0.005076.
  61. Иванова Г.П. Лейкоэнцефалиты у детей: дифференциально-диагностические, патогенетические и терапевтические аспекты: Автореф. дис. … докт. мед. наук. — СПб., 2012. — 44 с. [Ivanova GP. Leykoentsefality u detey: differentsial’no-diagnosticheskiye, patogeneticheskiye i terapevticheskiye aspekty. [dissertation abstract] Saint Petersburg; 2012. 44 р. (In Russ).] Доступно по: https://search.rsl.ru/ru/record/01005012368. Ссылка активна на 14.02.2020.
  62. Desforges M, Le Coupanec A, Dubeau P, et al. Human Coronaviruses and other respiratory viruses: underestimated opportunistic pathogens of the central nervous system? Viruses. 2019;12(1):14. doi: 10.3390/v12010014.
  63. Das G, Mukherjee N, Ghosh S. Neurological insights of COVID-19 pandemic. ACS Chem Neurosci. 2020:11(9):1206–1209. doi: 10.1021/acschemneuro.0c00201.
  64. Dixon L, Varley J, Gontsarova A, Mallon D, et al. COVID-19-related acute necrotizing encephalopathy with brain stem involvement in a patient with aplastic anemia. Neurol Neuroimmunol Neuroinflamm. 2020;7(5):e789. doi: 10.1212/NXI.0000000000000789.
  65. Cardona GC, Quintana Pájaro LD, Quintero Marzola GC, et al. Neurotropism of SARS-CoV 2: mechanisms and manifestations. J Neurol Sci. 2020;412:116824. doi: 10.1016/j.jns.2020.116824.
  66. Radmanesh A, Derman A, Lui YW, et al. COVID-19-associated diffuse leukoencephalopathy and microhemorrhages. Radiology. 2020;202040. doi: 10.11-48/radiol.2020202040.
  67. Kandemirli SG, Dogan L, Sarikaya ZT, et al. Brain MRI findings in patients in the intensive care unit with COVID-19 infection. Radiology. 2020;201697. doi: 10.1148/radiol.2020201697.
  68. Novi G, Rossi T, Pedemonte E, et al. Acute disseminated encephalomyelitis after SARS-CoV-2 infection. Neurol Neuroimmunol Neuroinflamm. 2020;7(5):e797. doi: 10.1212/NXI.0000000000000797.
  69. Parsons T, Banks S, Bae C, et al. COVID-19-associated Acute Disseminated Encephalomyelitis (ADEM). J Neurol. 2020;1–4. doi: 10.1007/s00415-020-09951-9.
  70. Reichard RR, Kashani KB, Boire NA, et al. Neuropathology of COVID-19: a spectrum of vascular and acute disseminated encephalomyelitis (ADEM)-like pathology. Acta Neuropathol. 2020;140(1):1–6. doi: 10.1007/s00401-020-02166-2.
  71. Franceschi AM, Ahmed O, Giliberto L, Castillo M. Hemorrhagic posterior reversible encephalopathy syndrome as a manifestation of COVID-19 infection. AJNR Am J Neuroradiol. 2020. doi: 10.3174/ajnr.A6595.
  72. Byrnes S, Bisen M, Syed B, et al. COVID-19 Encephalopathy masquerading as substance withdrawal. J Med Virol. 2020;10.1002/jmv.26065. doi: 10.1002/jmv.26065.
  73. Pastor J, Vega-Zelaya L, Abad EM. Specific EEG encephalopathy pattern in SARS-CoV-2 patients. J Clin Med. 2020;9(5):E1545. doi: 10.3390/jcm9051545.
  74. Poyiadji N, Shahin G, Noujaim D, et al. COVID-19-associated acute hemorrhagic necrotizing encephalopathy: CT and MRI features. Radiology. 2020;20118. doi: 10.1148/radiol.2020201187.
  75. Цинзерлинг В.А., Чухловина М.Л. Инфекционные поражения нервной системы: вопросы этиологии, патогенеза и диагностики. Руководство для врачей. — СПб.: ЭЛБИ-СПб, 2011. — 584 с. [Tsinzerling VA, Chukhlovina ML. Infektsionnyye porazheniya nervnoy sistemy: voprosy etiologii, patogeneza i diagnostiki. Rukovodstvo dlya vrachey. Saint Petersburg: ELBI-SPb; 2011. 584 р. (In Russ).]
  76. Шмидт Т.Е. Редкие демиелинизирующие заболевания центральной нервной системы // Неврологический журнал. — 2016. — Т.21. — №5. — С. 252–264. [Shmidt TE. Rare demyelinating diseases of central nervous system. Nevrologicheskiy Zhurnal (Neurological Journal). 2016;21(5):252–264. (In Russ).] doi: 10.18821/1560-9545-2016-21-5-252-264.
  77. Radmanesh F, Rodriguez-Pla A, Pincus MD, Burns JD. Severe cerebral involvement in adult-onset hemophagocytic lymphohistiocytosis. J Clin Neurosci. 2020;76:236–237. doi: 10.1016/j.jocn.2020.04.054.
  78. Finelli PF, Uphoff DF. Magnetic resonance imaging abnormalities with septic encephalopathy. J Neurol Neurosurg Psychiatry. 2004;75(8):1189–1191. doi: 10.1136/jnnp.2003.030833.
  79. Karakike E, Giamarellos-Bourboulis EJ. Macrophage activation-like syndrome: a distinct entity leading to early death in sepsis. Front Immunol. 2019;10:55. doi: 10.3389/fimmu.2019.00055.
  80. Misra DP, Agarwal V, Gasparyan AY, Zimba O. Rheumatologists’ perspective on coronavi rus disease 19 (COVID-19) and potential therapeutic targets. Clin Rheumatol. 2020;39(7):2055–2062. doi: 10.1007/s10067-020-05073-9.
  81. Valade S, Azoulay E, Galicier L, et al. Coagulation disorders and bleedings in critically ill patients with hemophagocytic lymphohistiocytosis. Mediсine. 2015;94(40):e1692. doi: 10.1097/MD.0000000000001692.
  82. Wu P, Duan F, Luo C, et al. Characteristics of ocular findings of patients with coronavirus disease 2019 (COVID-19) in Hubei Province, China. JAMA Ophthalmol. 2020;138(5):575–578. doi: 10.1001/jama ophthalmol.2020.1291.
  83. Loon SC, Teoh SC, Oon LL, et al. The severe acute respiratory syndrome Coronavirus in tears. Br J Ophthalmol. 2004;88(7):861–863. doi: 10.1136/bjo.2003.035931.
  84. Salducci M, La Torre G. COVID-19 emergency in the cruise’s ship: a case report of conjunctivitis. Clin Ter. 2020;171(3):e189–e191. doi: 10.7417/CT.2020.2212.
  85. Баклаушев В.П., Кулемзин С.В., Горчаков А.А., и др. COVID-19. Этиология, патогенез, диагностика и лечение // Клиническая практика. — 2020. — Т.11. — №1. — С. 7–20. [Baklaushev VP, Kulemzin SV, Gorchakov АА, et al. COVID-19. Etiology, pathogenesis, diagnosis and treatment. Journal of Clinical Practice. 2020;11(1):7–20. (In Russ).] doi: 10.17816/clinpract26339.
  86. Li JО, Lam DS, Chen Y, Ting DS. Novel Coronavirus disease 2019 (COVID-19): the importance of recognising possible early ocular manifestation and using protective eyewear. Br J Ophthalmol. 2020;104(3):297–298. doi: 10.1136/bjophthalmol-2020-315994.
  87. Chen Lu, Liu M, Zhang Z, et al. Ocular manifestations of a hospitalised patient with confirmed 2019 novel coronavirus disease. Br J Ophthalmol. 2020;104(6):748–755. doi: 10.1136/bjophthalmol-2020-316304.
  88. Vassilara F, Spyridaki A, Pothitos G, et al. A rare case of human coronavirus 229E associated with acute respiratory distress syndrome in a healthy adult. Case Rep Infect Dis. 2018;2018:6796839. doi: 10.1155/2018/6796839.
  89. Zhou Y, Zeng Y, Tong Y, et al. Ophthalmologic evidence against the interpersonal trans-mission of 2019 novel coronavirus through conjunctiva. New York: medRxiv. 2020. doi: 10.1101/2020.02.11.20021956.
  90. Scalinci SZ, Trovato Battagliola E. Conjunctivitis can be the only presenting sign and symptom of COVID-19. IDCases. 2020;20:e00774. doi: 10.1016/j.idcr.2020.e00774.
  91. Cheema M, Aghazadeh H, Nazarali S, et al. Keratoconjunctivitis as the initial medical presentation of the novel coronavirus disease 2019 (COVID-19). Can J Ophthalmol. 2020;S0008-4182(20)30305-7. doi: 10.1016/j.jcjo.2020.03.003.
  92. Sadhu S, Agrawal R, Pyare R, et al. COVID-19: Limiting the risks for eye care professionals. Ocul Immunol Inflamm. 2020;1–7. doi: 10.1080/0927394-8.2020.1755-442.
  93. De Grootmijnes JD, van Dun JM, van der Most RG, de Groot RJ. Natural history of a recurrent feline coronavirus infection and the role of cellular immunity in survival and disease. J Virol. 2005;79(2):1036–1044. doi: 10.1128/JVI.79.2.1036-1044.2005.
  94. Neri P, Pichi F. COVID-19 and the eye immunity: lesson learned from the past and possible new therapeutic insights. Int Ophthalmol. 2020;40(5):1057–1060. doi: 10.1007/s10792-020-01389-2.
  95. Nakagaki K, Nakagaki K, Taguchi F. Receptor-independent spread of a highly neurotropic murine coronavirus JHMV strain from initially infected microglial cells in mixed neural cultures. J Virol. 2005;79(10):6102–6110. doi: 10.1128/JVI.79.10.6102-6110.2005.
  96. Shindler KS, Kenyon LC, Dutt M, et al. Experimental optic neuritis induced by a demyelinating strain of mouse hepatitis virus. J Virol. 2008;82(17):8882–8886. doi: 10.1128/JVI.00920-08.
  97. Bailey OT, Pappenheimer AM, Cheever FS, Daniels JB. A murine virus (JHM) causing disseminated encephalomyelitis with extensive destruction of myelin: II. Pathology. J Exp Med. 1949;90(3):195–212. doi: 10.1084/jem.90.3.195.
  98. Seah I, Agrawal R. Can the Coronavirus Disease 2019 (COVID-19) affect the eyes? A review of Coronaviruses and ocular implications in humans and animals. Ocul Immunol Inflamm. 2020;28(3):391–395. doi: 10.1080/09273948.2020.1738501.
  99. Butowt R, Bilinska K. SARS-CoV-2: olfaction, brain infection, and the urgent need for clinical samples allowing earlier virus detection. ACS Chem Neurosci. 2020;11(9):1200–1203. doi: 10.1021/acschemneuro.0c00172.
  100. Qing H, Li Z, Yang Z, et al. The possibility of COVID-19 transmission from eye to nose. Acta Ophthalmol. 2020;98(3):e388. doi: 10.1111/aos.14412.
  101. Giacomelli A, Pezzati L, Conti F, et al. Self-reported olfactory and taste disorders in SARS-CoV-2 patients: A cross-sectional study. Clin Infect Dis. 2020;ciaa330. doi: 10.1093/cid/ciaa330.
  102. Ralli M, Di Stadio A, Greco A, et al. Defining the burden of olfactory dysfunction in COVID-19 patients. Eur Rev Med Pharmacol Sci. 2020;24(7):3440–3441. doi: 10.26355/eurrev_202004_20797.
  103. Lechien JR, Chiesa-Estomba CM, Place S, et al.; COVID-19 Task Force of YO-IFOS. Clinical and epidemiological characteristics of 1,420 European patients with mild-to-moderate Coronavirus Disease 2019. J Intern Med. 2020;10.1111/joim.13089. doi: 10.1111/joim.13089.
  104. Xydakis MS, Dehgani-Mobaraki P, Holbrook EH, et al. Smell and taste dysfunction in patients with COVID-19. Lancet Infect Dis. 2020;S1473-3099(20)30293-0. doi: 10.1016/S1473-3099(20)30293-0.
  105. Gane SB, Kelly C, Hopkins C. Isolated sudden onset anosmia in COVID-19 infection. A novel syndrome? Rhinology. 2020;58(3):299–301. doi: 10.4193/Rhin20.114.
  106. Hopkins C, Surda P, Kumar N. Presentation of new onset anosmia during the COVID-19 pandemic. Rhinology. 2020;58(3):295–298. doi: 10.4193/Rhin20.116.
  107. Moein ST, Hashemian SM, Mansourafshar B, et al. Smell dysfunction: a biomarker for COVID-19. Int Forum Allergy Rhinol. 2020;10.1002/alr.22587. doi: 10.1002/alr.22587.
  108. Yan CH, Faraji F, Prajapati DP, et al. Association of chemosen-sory dysfunction and Covid-19 in patients presenting with influenza-like symptoms. Int Forum Allergy Rhinol. 2020;10.1002/alr.22579. doi: 10.1002/alr.22579.
  109. Gautier J-F, Ravussin Y. A new symptom of COVID-19: loss of taste and smell. Obesity (Silver Spring). 2020;28(5):848. doi: 10.1002/oby.22809.
  110. Izquierdo-Dominguez A, Rojas-Lechuga MJ, Mullol J, Alobid I. Olfactory dysfunction in the COVID-19 outbreak. J Investig Allergol Clin Immunol. 2020. doi: 10.18176/jiaci.0567.
  111. Temmel AF, Quint C, Schickinger-Fischer B, et al. Characteristics of olfactory dis-orders in relation to major causes of olfactory loss. Arch Otolaryngol Head Neck Surg. 2002;128(6):635–641. doi: 10.1001/archotol.128.6.635.
  112. Soler ZM, Patel ZM, Turner JH, Holbrook EH. A primer on viral-associated olfactory loss in the era of COVID-19. Int Forum Allergy Rhinol. 2020;10.1002/alr.22578. doi: 10.1002/alr.22578.
  113. Lovato A, de Filippis C. Clinical presentation of COVID-19: a systematic review focusing on upper airway symptoms. Ear Nose Throat J. 2020;145561320920762. doi: 10.1177/0145561320920762.
  114. Heidari F, Karimi E, Firouzifar M, et al. Anosmia as a prominent symptom of COVID-19 infection. Rhinology. 2020;58(3):302–303. doi: 10.4193/Rhin20.140.
  115. Obiefuna S, Donohoe C. Neuroanatomy, Nucleus Gustatory. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020.
  116. Goh Y, Beh DL, Makmur A, et al. Pearls and oysters: facial nerve palsy as a neurological manifestation of Covid-19 infection. Neurology. 2020;10.1212/WNL.0000000000009863. doi: 10.1212/WNL.0000000000009863.
  117. Andorinho de Freitas Ferreira AC, Romão ТТ, Macedo YS, et al. COVID-19 and herpes zoster coinfection presenting with trigeminal neuropathy. Eur J Neurol. 2020:10.1111/ene.14361. doi: 10.1111/ene.14361.
  118. Vaira LA, Salzano G, Deiana G, De Riu G. Anosmia and ageusia: common findings in COVID-19 patients. Laryngoscope. 2020;130(7):1787. doi: 10.1002/lary.28692.
  119. Vaira LA, Deiana G, Fois AG, et al. Objective evaluation of anosmia and ageusia in COVID-19 patients: Single-center experience on 72 cases. Head Neck. 2020;42(6):1252–1258. doi: 10.1002/hed.26204.
  120. Finsterer J, Stollberger C. Causes of Hypogeusia/Hyposmia in SARS-CoV2 infected patients. J Med Virol. 2020;10.1002/jmv.25903. doi: 10.1002/jmv.25903.
  121. Wee LE, Chan YF, Teo NW, et al. The role of self-reported olfactory and gustatory dysfunction as a screening criterion for suspected COVID-19. Eur Arch Otorhinolaryngol. 2020;1–2. doi: 10.1007/s00405-020-05999-5.
  122. Ng SC, Tilg H. COVID-19 and the gastrointestinal tract: more than meets the eye. Gut. 2020;69(6):973–974. doi: 10.1136/gutjnl-2020-321195.
  123. Agarwal A, Chen A, Ravindran N, et al. Gastrointestinal and liver manifestations of COVID-19. J Clin Exp Hepatol. 2020;10(3):263–265. doi: 10.1016/j.jceh. 2020.03.001.
  124. Rothe C, Schunk M, Sothmann P, et al. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N Engl J Med. 2020;382(10):970–971. doi: 10.1056/NEJMc2001468.
  125. Collins AM, Neurogenic Cough. Neurologic and Neurodegenerative Diseases of the Larynx. 2020. Р. 253—261.
  126. Татарников В.С. Роль ростральных вентролатеральных отделов продолговатого мозга в регуляции активности дыхательного центра: Автореф. дис. … канд. мед. наук. — Самара, 1996. — 22 с. [Tatarnikov VS. Rol’ rostral’nykh ventrolateral’nykh otdelov prodolgovatogo mozga v regulyatsii aktivnosti dykhatel’nogo tsentra. [dissertation abstract] Samara; 1996. 22 р. (In Russ).] Доступно по: https://search.rsl.ru/ru/record/01000098524. Ссылка активна на 14.02.2020.
  127. Lee I-C, Huo T-I, Huang Yi-H. Gastrointestinal and liver manifestations in patients with COVID-19. J Chin Med Assoc. 2020;10.1097/JCMA.0000000000000319. doi: 10.1097/jcma.0000000000000319.
  128. Shastin D, Nidamanuri P, Nannapaneni R. Recurrent hiccups may signal brainstem pathology and should be investigated. BMJ Case Rep. 2018;2018. pii: bcr-2017-222926. doi: 10.1136/bcr-2017-222926.
  129. Xu J, Zhong S, Liu J, et al. Detection of severe acute respiratory syndrome coronavirus in the brain: potential role of the chemokine mig in pathogenesis. Clin Infect Dis. 2005;41(8):1089–1096. doi: 10.1086/444461.
  130. Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host‐virus interaction, and proposed neurotropic mechanisms. ACS Chem Neursci. 2020;11(7):995–998. doi: 10.1021/acschemneuro.0c00122.
  131. Li Y‐C, Bai W‐Z, Hashikawa T. The neuroinvasive potential of SARS‐CoV2 may play a role in the respiratory failure of COVID‐19 patients. J Med Virol. 2020;92(6):552–555. doi: 10.1002/jmv.25728.
  132. Tassorelli C, Mojoli F, Baldanti F, et al. COVID-19: What if the brain had a role in causing the deaths? Eur J Neurol. 2020;10.1111/ene.14275. doi: 10.1111/ene.14275.
  133. McCray PB, L, C, et al. Lethal infection of K18-hACE2 Mice infected with severe acute respiratory syndrome Coronavirus. . 2007;81(2):813–821. doi: .
  134. Natoli S, Oliveira V, Calabresi P, et al. Does SARS-Cov-2 invade the brain? Translational lessons from animal models. Eur J Neurol. 2020;10.1111/ene.14277. doi: 10.1111/ene.14277.
  135. Camdessanche JP, Morel J, Pozzetto B, et al. COVID-19 may induce Guillain-Barré syndrome. Rev Neurol (Paris). 2020;176(6):516–518. doi: 10.1016/j.neurol.2020.04.003.
  136. Riva N, Russo T, Falzone YM, et al. Post-infectious Guillain-Barré syndrome related to SARS-CoV-2 infection: a case report. J Neurol. 2020;1–3. doi: 10.1007/s00415-020-09907-z.
  137. Alberti P, Beretta S, Piatti M, et al. Guillain-Barré Syndrome Related to COVID-19 Infection. Neurol Neuroimmunol Neuroinflamm. 2020;7(4):e741. doi: 10.1212/XI.0000000000000741.
  138. Toscano G, Palmerini F, Ravaglia S, et al. Guillain-Barré syndrome associated with SARS-CoV-2. N Engl J Med. 2020;382(26):2574–2576. doi: 10.1056/NEJMc2009191.
  139. Padroni M, Mastrangelo V, Asioli GM, et al. Guillain-Barré syndrome following COVID-19: new infection, old complication? J Neurol. 2020;1–3. doi: 10.1007/s00415-020-09849-6.
  140. Finsterer J, Scorza FA, Ghosh R. COVID-19 Polyradiculitis in 24 Patients Without SARS-CoV-2 in the Cerebro-Spinal Fluid. J Med Virol. 2020;10.1002/jmv.26121. doi: 10.1002/jmv.26121.
  141. Coen M, Jeanson G, Almeida LA, et al. Guillain-Barré Syndrome as a complication of SARS-CoV-2 infection. Brain Behav Immun. 2020;87:111–112. doi: 10.1016/j.bbi.2020.04.074.
  142. Lascano AM, Epiney J-B, Coen M, et al. SARS-CoV-2 and Guillain-Barré Syndrome: AIDP variant with favorable outcome. Eur J Neurol. 2020;10.1111/ene.14368. doi: 10.1111/ene.14368.
  143. Bigaut K, Mallaret M, Baloglu S, et al. Guillain-Barré syndrome related to SARS-CoV-2 infection. Neurol Neuroimmunol Neuroinflamm. 2020;7(5):e785. doi: 10.1212/NXI.0000000000000785.
  144. Assini A, Benedetti L, Di Maio S, et al. New clinical manifestation of COVID-19 related Guillain-Barrè Syndrome highly responsive to intravenous immunoglobulins: two Italian cases. Neurol Sci. 2020. doi: 10.1007/s10072-020-04484-5.
  145. Oguz-Akarsu E, Ozpar R, Mirzayev H, et al. Guillain-Barré syndrome in a patient with minimal symptoms of COVID-19 infection. Muscle Nerve. 2020;10.1002/mus.26992. doi: 10.1002/mus.26992.
  146. Sedaghat Z, Karimi N. Guillain-Barre syndrome associated with COVID-19 infection: a case report. J Clin Neurosci. 2020;76:233–235. doi: 10.1016/j.jocn.2020.04.062.
  147. El Otmani H, El Moutawakil B, Rafai MA, et al. Covid-19 and Guillain-Barré syndrome: more than a coincidence! Rev Neurol (Paris). 2020;176(6):518–519. doi: 10.1016/j.neurol.2020.04.007.
  148. Su XW, Palka SV, Rao RR, et al. SARS-CoV-2-associated Guillain-Barré syndrome with dysautonomia. Muscle Nerve. 2020;10.1002/mus.26988. doi: 10.1002/mus.26988.
  149. Turgay C, Emine T, Ozlem K, et al. A rare cause of acute flaccid paralysis: human coronaviruses. J Pediatr Neurosci. 2015;10(3):280–281. doi: 10.4103/1817-1745.165716.
  150. Kim JE, Heo JH, Kim HO, et al. Neurological complications during treatment of Middle East respiratory syndrome. J Clin Neurol. 2017;13(3):227–233. doi: 10.3988/jcn.2017.13.3.227.
  151. Gigli GL, Bax F, Marini A, et al. Guillain-Barré syndrome in the COVID-19 era: just an occasional cluster? J Neurol. 2020;1–3. doi: 10.1007/s00415-020-09911-3.
  152. Gupta A, Paliwal VK, Garg RK. Is COVID-19-related Guillain-Barré syndrome different? Brain Behav Immun. 2020;87:177–178. doi: 10.1016/j.bbi.2020.05.051.
  153. Sancho-Saldaña A, Lambea-Gil Á, Capablo Liesa JL, et al. Guillain-Barré syndrome associated with leptomeningeal enhancement following SARS-CoV-2 infection. Clin Med (Lond). 2020;clinmed.2020-0213. doi: 10.7861/clinmed.2020-0213.
  154. Chan JL, Ebadi H, Sarna JR. Guillain-Barré syndrome with facial diplegia related to SARS-CoV-2 infection. Can J Neurol Sci. 2020;1–10. doi: 10.1017/cjn.2020.106.
  155. Caamaño DS, Beato AR. Facial diplegia, a possible atypical variant of Guillain-Barré Syndrome as a rare neurological complication of SARS-CoV-2. J Clin Neurosci. 2020;77:230–232. doi: 10.1016/j.jocn.2020.05.016.
  156. Helbok R, Beer R, Löscher W, et al. Guillain-Barré syndrome in a patient with antibodies against SARS-COV-2. Eur J Neurol. 2020. doi: 10.1111/ene.14388.
  157. Scoppetta C, Di Gennaro G, Polverino F. Editorial – High dose intravenous immunoglobulins as a therapeutic option for COVID-19 patients. Eur Rev Med Pharmacol Sci. 2020;24(9):5178–5179. doi: 10.26355/eurrev_202005_21214.
  158. Gutiérrez-Ortiz C, Méndez A, Rodrigo-Rey S, et al. Miller fisher syndrome and polyneuritis Cranialis in COVID-19. Neurology. 2020;10.1212/WNL.0000000000009619. doi: 10.1212/WNL.0000000000009619.
  159. Lantos JE, Strauss SB, Lin E. COVID-19-associated miller fisher syndrome: MRI findings. AJNR Am J Neuroradiol. 2020. doi: 10.3174 /ajnr.A6609.
  160. Dinkin M, Gao V, Kahan J, et al. COVID-19 presenting with ophthalmoparesis from cranial nerve palsy. Neurology. 2020;10.1212/WNL.0000000000009700. doi: 10.1212/WNL.0000000000009700.
  161. Wei H, Yin H, Huang M, Guo Z. The 2019 novel cornoavirus pneumonia with onset of oculomotor nerve palsy: a case study. J Neurol. 2020;267(5):1550–1553. doi: 10.1007/s00415-020-09773-9.
  162. Pérez Álvarez ÁI, Suárez Cuervo C, Fernández Menéndez S. [Infección por SARS-CoV-2 asociada a diplopía y anticuerpos antirreceptor de acetilcolina. (In English, Spanish)]. Neurología. 2020,35(4):264–265. doi: 10.1016/j.nrl.2020.04.003.
  163. Anand P, Slama MC, Kaku M, et al. COVID-19 in patients with myasthenia gravis. Muscle Nerve. 2020;10.1002/mus.26918. doi: 10.1002/mus.26918.
  164. Guidon AC, Amato AA. COVID-19 and neuromuscular disorders. Neurology. 2020;94(22):959–969. doi: 10.1212/WNL.0000000000009566.
  165. Jacob S, Muppidi S, Guidon A, et al; International MG/COVID-19 Working Group. Guidance for the management of myasthenia gravis (MG) and Lambert-Eaton myasthenic syndrome (LEMS) during the COVID-19 pandemic. J Neurol Sci. 2020;412:116803. doi: 10.1016/j.jns.2020.116803.
  166. Delly F, Syed MJ, Lisak RP, Zutshi D. Myasthenic crisis in COVID-19. J Neurol Sci. 2020;414:116888. doi: 10.1016/j.jns.2020.116888.
  167. Ramaswamy SB, Govindarajan R. COVID-19 in Refractory Myasthenia Gravis - A Case Report of Successful Outcome. J Neuromuscul Dis. 2020;7(3):361-364. doi: 10.3233/JND – 200520.
  168. Wong PF, Craik S, Newman P, et al. Lessons of the month 1: a case of rhombencephalitis as a rare complication of acute COVID-19 infection. Clin Med (Lond). 2020. pii: clinmed.2020-0182. doi: 10.7861/clinmed.2020-0182.
  169. Cuneo GL, Grazzini I, Guadagni M, et al. An atypical Bickerstaff’s brainstem encephalitis with involvement of spinal cord. Neuroradiol J. 2016;29(5):396–399. doi: 10.1177/197140091666 5383.
  170. Муртазина А.Ф., Наумова Е.С., Никитин С.С., и др. Стволовой энцефалит Бикерстаффа, острый поперечный миелит и острая моторная аксональная нейропатия: сложности диагностики и лечения пациентов с перекрестными синдромами. Клиническое наблюдение // Нервно-мышечные болезни. — 2017. — Т.7. — №3. — С. 56–62. [Murtazina AF, Naumova ES, Nikitin SS, et al. Bickerstaff brainstem encephalitis, acute transverse myelitis, and acute motor axonal neuropathy: diagnostic and treatment challenges in patients with concomitant syndromes. Clinical observation. Neuromuscular Diseases. 2017;7(3):56–62. (In Russ).] doi: 10.17650/2222-8721-2017-7-3-56-62.
  171. Sotoca J, Rodríguez-Álvarez Y. COVID-19-associated acute necrotizing myelitis. Neurol Neuroimmunol Neuroinflamm. 2020;7(5):e803. doi: 10.1212/NXI.0000000000000803.
  172. Гусев Е.И., Мартынов М.Ю., Бойко А.Н., и др. Новая коронавирусная инфекция (COVID-19) и поражение нервной системы: механизмы неврологических расстройств, клинические проявления, организация неврологической помощи // Журнал неврологии и психиатрии им. С.С. Корсакова. — 2020. — Т.120. — №6. — С. 7–16. [Gusev EI, Martynov MYu, Boyko AN, et al. Novaya koronavirusnaya infektsiya (COVID-19) i porazheniye nervnoy sistemy: mekhanizmy nevrologicheskikh rasstroystv, klinicheskiye proyavleniya, organizatsiya nevrologicheskoy pomoshchi. S.S. Korsakov Journal of Neurology and Psychiatry. 2020;120(6):7–16. (In Russ).] doi: 10.17116/ jnevro20201200617. https://doi.org/10.17116/jnevro20201200617
  173. Анестезиолого-реанимационное обеспечение пациентов с новой коронавирусной инфекцией COVID-19. Федерация анестезиологов и реаниматологов. Методические рекомендации. — М., 2020. — 183 с. [Anesteziologo-reanimatsionnoye obespecheniye patsiyentov s novoy koronavirusnoy infektsiyey COVID-19. Federatsiya anesteziologov i reanimatologov. Metodicheskiye rekomendatsii. Moscow; 2020. 183 p. (In Russ).]
  174. Lai C-C, Liu YH, Wang C-Yi, et al. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): facts and myths. J Microbiol Immunol Infect. 2020;53(3):404–412. doi: 10.1016/j.jmii.2020.02.012.
  175. Varga Z, Flammer AJ, Steiger P, et al. Endotehelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–1418. doi: 10.1016/S0140-6736 (20)30937-5.
  176. Morassi M, Bagatto D, Cobelli M, et al. Stroke in patients with SARS-CoV-2 infection: case series. J Neurol. 2020;1–8. doi: 10.1007/s00415-020-09885-2.
  177. Inciardi RM, Lupi L, Zaccone G, et al. Cardiac involvement in a patient with Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020. doi: 10.1001/jama-cardio.2020.1096.
  178. Guo T, Fan Y, Chen M, et al. Cardiovascular implications of fatal outcomes of patients with Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020:e201017.doi: 10.1001/jamacardio.2020.1017.
  179. Qureshi AI, Abd-Allah F, Alsenani F, et al. Management of acute ischemic stroke in patients with COVID-19 infection: Report of an international panel. Int J Stroke. 2020;1747493020923234. doi: 10.1177/1747493020923234.
  180. Pranata R, Huang I, Lukito AA, Raharjo SB. Elevated N-terminal Pro-Brain natriuretic peptide is associated with increased mortality in patients with COVID-19: systematic review and meta-analysis. Postgrad Med J. 2020;96(1137):387–391. doi: 10.1136/postgradmedj-2020-137884.
  181. Tu WJ, Cao J, Yu L, et al. Clinicolaboratory study of 25 fatal cases of COVID-19 in Wuhan. Intensive Care Med. 2020;46(6):1117–1120. doi: 10.1007/s00134-020-06023-4.
  182. Madjid M, Safavi‐Naeini P, Solomon SD, Vardeny O. Potential effects of coronaviruses on the cardiovascular system: a review. JAMA Cardiol. 2020. doi: 10.1001/jamacardio.2020.1286.
  183. Akhmerov A, Marban E. COVID-19 and the heart. Circ Res. 2020;126(10):1443–1455. doi: 10.1161/CIRCRES AHA.120.317055.
  184. Aggarwal G, Lippi G, Henry BM. Cerebrovascular disease is associated with an increased disease severity in patients with Coronavirus Disease 2019 (COVID-19): a pooled analysis of published literature. Int J Stroke. 2020;15(4):385–389. doi: 10.1177/1747493020921664.
  185. Hess DC, Eldahshan W, Rutkowski E. COVID-19-related stroke. Transl Stroke Res. 2020;11(3):322–325. doi: 10.1007/s12975-020-00818-9.
  186. Young K. COVID-19: Stroke in Young Adults/New Presentation in Kids/ACS Advissions. N Engl J Med. 2020. doi: 10.1056/NEYMc2009787.
  187. Jin H., Hong C., Chen S., Zhou Y , Wang Y. et al. Consensus for Prevention and Management of Coronavirus Disease 2019 (COVID-19) for Neurologists. Stroke Vasc. Neurol., 2020; svn-2020-0003-82. doi: 10.1136/svn-2020-000382.
  188. Lodigiani C, Iapichino G, Carenzo L, et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res. 2020;191:9–14. doi: 10.1016/j.thromres.2020.04.024.
  189. Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N Engl J Med. 2020;382(17):e38. doi: 10.1056/NEJMc2007575.
  190. Bernstein L, Stead Sellers F. Patients with heart attacks, strokes and even appendicitis vanish from hospitals. 2020. Available from: https://www.washingtonpost.com/health/patients-with-heart-attacks-strokes-and-even-appendicitis-vanish-from-hospitals/2020/04/19/9ca3ef24-7eb4-11ea-9040-68981f488eed_story.html.
  191. Cavalcanti DD, Raz E, Shapiro M, et al. Cerebral venous thrombosis associated with COVID-19. AJNR Am J Neuroradiol. 2020. doi: 10.3174/ajnr.A6644.
  192. Hughes C, Nichols T, Pike А, et al. Cerebral venous sinus thrombosis as a presentation of COVID-19. Eur J Case Rep Intern Med. 2020;7(5):001691. doi: 10.12890/2020_001691.
  193. Poillon G, Obadia M, Perrin M, et al. Cerebral venous thrombosis associated with COVID-19 infection: causality or coincidence? J Neuroradiol. 2020;S0150-9861(20)30167-X. doi: 10.1016/j.neu-rad.2020.05.003.
  194. Avula A, Nalleballe K, Narula N, et al. COVID-19 presenting as stroke. Brain Behav Immun. 2020;87:115–119. doi: 10.1016/j.bbi.2020.04.077.
  195. Violi F, Pastori D, Cangemi R, et al. Hypercoagulation and antithrom-botic treatment in Coronavirus 2019: a new challenge. Thromb Haemost. 2020;120(6):949–956. doi: 10.1055/s-0040-1710317.
  196. Zhao J, Rudd A, Liu R. Challenges and potential solutions of stroke care during the Coronavirus disease 2019 (COVID-19) outbreak. Stroke. 2020;51(5):1356–1357. doi: 10.1161/STROKEAHA.120.029701.
  197. Oxley TJ, Mocco J, Majidi S, et al. Large-Vessel stroke as a presenting feature of Covid-19 in the young. N Engl J Med. 2020;382(20):e60. doi: 10.1056/NEJMc2009787.
  198. Siniscalchi A, Gallelli L. Could COVID-19 represent a negative prognostic factor in patients with stroke? Infect Control Hosp Epidemiol. 2020;1. doi: 10.1017/ice.2020.146.
  199. Helms J, Kremer S, Merdji H, et al. Neurologic features in severe SARS-CoV-2 infection. N Engl J Med. 2020;382(23):2268–2270. doi: 10.1056/NEJMc2008597.
  200. Dafer RM, Osteraas ND, Biller J. Acute stroke care in the Coronavirus disease 2019 pandemic. J Stroke Cerebrovasc Dis. 2020;29(7):10488. doi: 16/j.jstrokecerebrovasdis.2020.104881.
  201. Leira EC, Russman AN, Biller J, et al. Preserving stroke care during the COVID-19 pandemic: potential issues and solutions. Neurology. 2020;10.1212/WNL.00000-00000009713. doi: 10.1212/WNL.0000000000009713.
  202. Tsivgoulis G, Palaiodimou L, Katsanos AH, et al. Neurological manifestations and implications of COVID-19 pandemic. Ther Adv Neurol Disord. 2020;13:1756286420932036. doi: 10.1177/1756286420932036
  203. Smith MS, Bonomo J, Knight 4th WA, et al. Endovascular therapy for patients with acute ischemic stroke during the COVID-19 Pandemic: a proposed algorithm. Stroke. 2020;51(6):1902–1909. doi: 10.1161/STROKEAHA.120.029863.
  204. Fraser JF, Arthur AS, Chen M, et al. Society of neurointerventional surgery recommendations for the care of emergent neurointerventional patients in the setting of Covid-19. J Neurointerv Surg. 2020;12(6):539–541. doi: 10.1136/neu-rintsurg-2020-016098.
  205. Sharifi-Razavi A, Karimi N, Rouhani N. COVID-19 and intracerebral haemorrhage: causative or coincidental? New Microbes New Infect. 2020;35:100669. doi: 10.1016/j.nmni.2020.100669.
  206. Saiegh FA, Ghosh R, Leibold A, et al. Status of SARS-CoV-2 in cerebrospinal fluid of patients with COVID-19 and stroke. J Neurol Neurosurg Psychiatry. 2020;jnnp-2020-323522. doi: 10.1136/jnnp-2020-323522.
  207. Chougar L., Mathon B., Weiss N., Degos V., Shor N. Atypical Deep Cerebral Vein Thrombosis with Hemorrhagic Venous Infarction in a Patient Positive for COVID-19. AJNR Am J Neuroradiol. 2020. doi: 10.3174/ajnr.A6642.
  208. Herman C., Mayer K., Sarwal A. Scoping review of prevalence of neurologic comorbidities in patients hospitalized for COVID-19. Neurology., 2020; 95:1-8. doi: 10.1212/WNL.0000000000 009673.
  209. Tay HS, Harwood R. Atypical presentation of COVID-19 in a frail older person. Age Ageing. 2020;afaa068. doi: 10.1093/ageing/afaa068.
  210. Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 2020;e200950. doi: 10.1001/jamacardio.2020.0950.
  211. Potere N, Valeriani E, Candeloro M, Tana M, Porreca E. et al. Acute complications and mortality in hospitalized patients with coronavirus disease 2019: a systematic review and meta-analysis. Crit Care. 2020;24(1):389. doi: 10.1186/s13054-020-03022-1.
  212. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med. 2020;8(5):475–448. doi: 10.1016/S2213-2600(20)30079-5.
  213. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. doi: 10.1016/S0140-6736(20)30566-3.
  214. La Hue SC, James TC, Newman JC, et al. W. Collaborative Delirium Prevention in the Age of COVID-19. J Am Geriatr Soc. 2020;68(5):947–949. doi: 10.1111/jgs.16480.
  215. Sanders BJ, Bakar M, Mehta S, et al. Hyperactive delirium requires more aggressive management in patients with COVID-19: temporarily rethinking “Low and Slow”. J Pain Symptom Manage. 2020: S0885-3924(20)30389-4. doi: 10.1016/j.jpainsymman.2020.05.013.
  216. Salluh JI, Wang H, Schneider EB. Outcome of delirium in critically ill patients: systematic review and meta-analysis. BMJ. 2015;350:h2538. doi: 10.1136/bmj.h2538.
  217. O’Hanlon S, Inouye SK. Delirium: a missing piece in the COVID-19 pandemic puzzle. Age Ageing. 2020:afaa094. doi: 10.1093/ageing/afaa094.
  218. Alkeridy WA, Almaghlouth I, Alrashed R, et al. A unique presentation of delirium in a patient with otherwise asymptomatic COVID-19. J Am Geriatr Soc. 2020;10.1111/jgs.16536. doi: 10.1111/jgs.16536.
  219. Kotfis K, Roberson SW, Wilson JE, et al. COVID-19: ICU delirium management during SARS-CoV-2.pandemic.Crit Care. 2020;24(1):176. doi: 10.1186/s13054-020-02882-x.
  220. Седация пациентов в отделениях анестезиологии, реанимации и интенсивной терапии. Федерация анестезиологов и реаниматологов. Методические рекомендации. — М., 2020. — 39 с. [Sedatsiya patsiyentov v otdeleniyakh anesteziologii, reanimatsii i intensivnoy terapii. Federatsiya anesteziologov i reanimatologov. Metodicheskiye rekomendatsii. Moscow; 2020. 39 p. (In Russ).]
  221. Kotfis K, Williams RS, Wilson J, et al. COVID-19: What do we need to know about ICU delirium during the SARS-CoV-2 pandemic? Anaesthesiol Intensive Ther. 2020;40590. doi: 10.5114/ait.2020.95164.
  222. Shneider A, Kudriavtsev A, Vakhrusheva A. Can Melatonin reduce the severity of COVID-19 pandemic? Int Rev Immunol. 2020;1–10. doi: 10.1080/08830185.2020.1756284.
  223. Zambrelli E, Canevini M, Gambini O, D’Agostino A. Delirium and sleep disturbances in COVID-19: a possible role for melatonin in hospitalized patients? Sleep Med. 2020;70:111. doi: 10.1016/j.sleep.2020.04.006.
  224. Rábano-Suárez P, Bermejo-Guerrero L, Méndez-Guerrero A, et al. Genera-lized myoclonus in COVID-19. Neurology. 2020;10.1212/WNL.0000000000009829. doi: 10.1212/WNL.00000 00000009829.
  225. Balloy G., Mahé P.J., Leclair-Visonneau L., Péréon Y. et al. Non-lesional status epilepticus in a patient with coronavirus disease 2019. Neurophysiol., 2020.doi: 10.1016/j.clinph.2020. 05.005.
  226. Garg RK, Paliwal VK, Gupta A. Encephalopathy in patients with COVID-19: a review. J Med Virol. 2020. doi: 10.1002/jmv.26207.
  227. Asadi-Pooya A.A. Seizures Associated With Coronavirus Infections. Seizure., 2020;79:49-52. doi: 10.1016/j.seizure.2020.05.005.
  228. French JA, Brodie MJ, Caraballo R. Keeping people with epilepsy safe during the Covid-19 pandemic. Neurology. 2020;94(23):1032–1037. doi: 10.1212/WNL0000000000009632.
  229. Zayet S, Abdallah YB, Royer P-Y, et al. Encephalopathy in patients with COVID-19: ‘Causality or Coincidence?’ J Med Virol. 2020;10.1002/jmv.26027. doi: 10.1002/jmv.26027.
  230. Filatov A, Sharma P, Hindi F, Espinosa PS. Neurological complications of Coronavirus disease (COVID-19) Encephalopathy. Cureus. 2020;12(3):e7352. doi: 10.7759/cureus.7352.
  231. Haddad S, Tayyar R, Risch L, et al. Encephalopathy and Seizure Activity in a COVID-19 well controlled HIV patient. IDCases. 2020;21:e00814.doi: 10.1016/j.idcr.2020.e00814.
  232. Pinto AA, Carroll LS, Nar V, et al. CNS inflammatory vasculopathy with Antimyelin Oligodendrocyte Glycoprotein Antibodies in COVID-19. Neurol Neuroimmunol Neuroinflamm. 2020;7(5):e813. doi: 10.1212/NXI.0000000000000813.
  233. Brun G, Hak J-F, Coze S, et al. COVID-19-White matter and globus pallidum lesions: demyelination or small-vessel vasculitis? Neurol Neuroimmunol Neuroinflamm. 2020;7(4):e777. doi: 10.1212/NXI.0000000000000777.
  234. Zanin L, Saraceno G, Panciani PP, et al. SARS-CoV-2 can induce brain and spine demyelinating lesions. Acta Neurochir (Wien). 2020;162(7):1491–1494. doi: 1007/s00701-020-04374-x.
  235. Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C. et al. Pathological Findings of COVID-19 Associated With Acute Respiratory Distress Syndrome. Lancet Respir. Med., 2020;8(4):420-422. doi: 10.1016/S2213-2600(20)30076-X.
  236. Li Z, Huang Y, Guo X. The brain, another potential target organ, needs early protection from SARS-CoV-2 neuroinvasion. Sci China Life Sci. 2020;63(5):771–773. doi: 10.1007/s11427-020-1690-y.
  237. Colafrancesco S., Alessandri C., Conti F., Priori R. COVID-19 gone bad: A new character in the spectrum of the hyperferritinemic syndrome? Autoimmun. Rev., 2020 :102573. doi: 10.1016/ j. autrev.2020.102573.
  238. Лунева И.Е., Полищук Р.В., Чернобаева Л.С., и др. Острый некротический энцефалит, ассоциированный с вирусом гриппа, у взрослых // Журнал неврологии и психиатрии им. С.С. Корсакова. — 2020. — Т.120. — №4. — С. 102–106. [Luneva IE, Polishchuk RV, Chernobayeva LS, et al. Ostryy nekroticheskiy entsefalit, assotsiirovannyy s virusom grippa, u vzroslykh. S.S. Korsakov Journal of Neurology and Psychiatry. 2020;120(4):102–106. (In Russ).] doi: 10.17116/jnevro2020120041102.
  239. Мартынов М.Ю., Шамалов Н.А., Хасанова Д.Р., и др. Ведение пациентов с острыми нарушениями мозгового кровообращения в контексте пандемии COVID-19. Временные методические рекомендации. Версия 2.16.04. — М., 2020. — 18 с. [Martynov MYu, Shamalov NA, Khasanova DR, et al. Vedeniye patsiyentov s ostrymi narusheniyami mozgovogo krovoobrashcheniya v kontekste pandemii COVID-19. Vremennyye metodicheskiye rekomendatsii. Version 2.16.04. Moscow; 2020. 18 p. (In Russ).]
  240. Berger JR, Brandstadter R, Bar-Or A. COVID-19 and MS disease-modifying therapies. Neurol Neuroimmunol Neuroinflamm. 2020;7(4):e761. doi: 10.1212/NXI.0000000000000761.
  241. Kandasamy M. Perspectives for the Use of Therapeutic Botulinum Toxin as a multifaceted candi-date drug to attenuate COVID-19. Med Drug Discov. 2020;6:100042. doi: 10.1016/j.medidd. 2020.100042.
  242. Barnes BJ, Adrover JM, Baxter-Stoltzfus A, et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. Exp Med. 2020;217(6):e20200652. doi: 10.1084/jem.20200652.
  243. Пастер Л. Избранные труды в 2 т. Т. I / Под ред. А.А. Имшенецкого. — М.: Издательство Академии Наук СССР, 1960. — 1012 с. [Paster L. Izbrannyye trudy v 2 t. Vol. I. Ed by A.A. Imshenetsky. Moscow: Izdatel’stvo Akademii Nauk SSSR; 1960. 1012 p. (In Russ).]
  244. Xu H., Zhong L., Deng J. et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci. 2020;12(1):8. doi: 10.1038/s41368-020-0074-x.
  245. Brann DH, Tsukahara T, Weinreb C, et al. Non-neuronal expression of SARS-CoV-2 entry genes in the olfactory system suggests mechanisms underlying COVID-19-associated anosmia. bioRxiv. 2020;2020.03.25.009084. doi: 10.1101/2020.03.25.009084.
  246. Vavougios G.D. Host Proteases as Determinants of Coronaviral Neurotropism and Virulence. Brain Behav. Immun., 2020;S0889-1591(20)30464-5. doi: 10.1016/j.bbi.2020.04.010.
  247. Zhao Y, Zhao Z, Wang Y, et al. Single-cell RNA expression profiling of ACE2, the receptor of SARS-CoV-2. bioRxiv. 2020. doi: 10.1101/2020.01.26.919985.
  248. Bunyavanich S, Do A, Vicencio A. Nasal gene expression of angiotensin-converting enzyme 2 in children and adults. JAMA. 2020;323(23):2427–2429. doi: 10.1001/jama.2020.8707.
  249. Gandhi S., Srivastava A. K., Ray U., Tripathi P.P. Is the Collapse of the Respiratory Center in the Brain Responsible for Respiratory Breakdown in COVID-19 Patients? ACS Chem Neuro- sci. 2020;11(10):1379-1381. doi: 10.1021/acschemneuro.0c00217.
  250. Zhou Z, Kang H, Li S, Zhao X. Understanding the neurotropic characteristics of SARS-CoV-2: from neurological manifestations of COVID-19 to potential neurotropic mechanisms. J Neurol. 2020;1–6. doi: 10.1007/s00415-020-09929-7.
  251. Le Сoupanec A, Desforges M, Meessen-Рinard M, et al. Cleavage of a neuroinvasive human respiratory virus spike glycoprotein by proprotein convertases modulates neurovirulence and virus spread within the central nervous system. PLoS Pathog. 2015;11(11):e1005261. doi: 10.1371/journal.ppat.1005261.
  252. Paniz-Mondolfi A, Bryce C, Grimes Z, et al. Central nervous system involvement by severe acute respiratory Syndrome Coronavirus-2 (SARS-CoV-2). J MedVirol. 2020;92(7):699–702. doi: 10.1002/ jmv.25915.
  253. Lau K.-K., Yu W.-C., Chu C.-M., Lau S.-T., Sheng B., Yuen K.-Y. Possible central nervous system infection by SARS coronavirus. Emerg. Infect. Dis., 2004;10(2):342-344.doi:10.32 01/eid1002.030638.
  254. Netland J, Meyerholz DK, Moore S, et al. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008;82(15):7264–7275. doi: 10.1128/JVI.00737-08.
  255. Dubé M, Le Coupanec A, Wong AH, et al. Axonal transport enables neuron-to-neuron propagation of human coronavirus OC43. J Virol. 2018;92(17):e00-404-18. doi: 10.1128/JVI.00404-18.
  256. Perlman S, Evans G, Afifi A. Effect of olfactory bulb ablation on spread of a neurotropic corona-virus into the mouse brain. J Exp Med. 1990;172(4):1127–1132. doi: 10.1084/jem.172.4.1127.
  257. Niazkar HR, Zibaee B, Nasimi A, Bahri N. The neurological manifestations of COVID-19: a review article. Neurol Sci. 2020;1–5. doi: 10.1007/s10072-020-04486-3.
  258. Singh AK, Bhushan B, Maurya A, et al. Novel coronavirus disease 2019 (COVID-19) and neurodegenerative disorders. Dermatol Ther. 2020;e13591. doi: 10.1111/dth.13591.
  259. Mori I. Transolfactory neuroinvasion by viruses threatens the human brain. Acta Virol. 2015;59(4):338–349. doi: 10.4149/av_2015_04_338.
  260. Beghi E, Feigin V, Caso V, Santalucia P, Logroscino G. COVID-19 Infection and Neurological Complications: Present Findings and Future Predictions. Neuroepidemiology. 2020 Jul 1:1-6. doi: 10.1159/000508991.
  261. Wang L, Shen Y, Li M, et al. Clinical manifestations and evidence of neurological involvement in 2019 novel coronavirus SARS-CoV-2: a systematic review and meta-analysis. J Neurol. 2020;1–13. doi: 10.1007/s00415-020-09974-2.
  262. Yachou Y, El Idrissi A, Belopasov V, et al. Neuroinvasion, neurotropic and neuroinflam-matory events of SARS-CoV-2: understanding the neurological manifestations in COVID-19 patients. Neurol Sci. 2020.
  263. Koralnik IJ, Tyler KL. COVID-19: a global threat to the nervous system. Ann Neurol. 2020;88(1):1–11. doi: 10.1002/ana.25807.
  264. Kwong KC, Mehta PR, Shukla G, Mehta AR. COVID-19, SARS and MERS: a neurological perspective COVID-19, SARS and MERS: a neurological perspective. J Clin Neurosci. 2020;77:13–16. doi: 10.1016/j.jocn.2020.04.124.
  265. Whittaker A, Anson M, Harky A. Neurological manifestations of COVID-19: a systematic review and current update. Acta Neurol Scand. 2020;142(1):14–22. doi: 10.1111/ane.13266.
  266. Garg S, Garg M, Prabhakar N, Malhotra P, Agarwal R . Unraveling the mystery of Covid-19 Cytokine storm: From skin to organ systems. Dermatol Ther. 2020 Jun 19:e13859. doi: 10.1111/dth.13859.
  267. Bridwell R., Long B., Gottlieb M. Neurologic Complications of COVID-19. Am. J. Emerg. Med,. 2020. doi: 10. 1016/j.ajem.2020.05.024.
  268. Baig AM. Updates on what ACS reported: emerging evidences of COVID-19 with nervous system involvement. ACS Chem Neurosci. 2020;11(9):1204–1205. doi: 10.1021/acschem neuro.0c00181.
  269. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘cytokine storm’ in COVID-19. J Infect. 2020;80(6):607–613. doi: 10.1016/j.jinf.2020.03.037.
  270. Chigr F, Merzouki M, Najimi M. Autonomic Brain Centers and Pathophysiology of COVID-19. ACS Chem Neurosci. 2020;11(11):1520-1522. doi: 10.1021/acschem neuro.0с00265.
  271. Li K, Wohlford‐Lenane C, Perlman S, et al. Middle east respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4. J Infect Dis. 2016;213(5):712‐722. doi: 10.1093/infdis/jiv499.
  272. Li Z, Huang Y, Guo X. The Brain, Another Potential Target Organ, Needs Early Protection From SARS-CoV-2 Neuroinvasion. Sci. China Life Sci. 2020;63(5):771-773. doi: 10.1007/s11427-020-1690-y.
  273. Neilson DE, Adams MD, Orr CMD, Schelling DK, Eiben RM et al. Infection-triggered familial or recurrent cases of acute necrotizing encephalopathy caused by mutations in a component of the nuclear pore, RANBP2. Am J Hum Genet. 2009; 84:44–51. doi: 10.1016/j. ajhg.2008.12.009.
  274. Singh R.R., Sedani S., Lim M., Wassmer E., Absoud M. RANBP2 Mutation and Acute Necro-tizing Encephalopathy: 2 Cases and a Literature Review of the Expanding Clinico-Radiological Phenotype. Eur. J. Paediatr. Neurol., 2015;19(2):106-13. doi: 10.1016/j. ejpn.2014.11.010.
  275. Cappello F. COVID-19 and molecular mimicry: The Columbus’ egg? J Clin Neurosci. 2020;77:246. doi: 10.1016/j.jocn.2020.05.015.
  276. Lippi A, Domingues R, Setz C, et al. SARS-CoV-2: at the crossroad between aging and neurodegeneration. Mov Disord. 2020;35(5):716–720. doi: 10.1002/mds.28084.
  277. Papa SM, Brundin P, Fung VS, et al. Impact of the COVID-19 pandemic on parkinson’s disease and movement disorders. Mov Disord. 2020;35(5):711–715. doi: 10.1002/mds.28067.
  278. Бойко А.Н., Лащ Н.Ю., Спирин Н.Н., и др. Ведение пациентов с рассеянным склерозом в условиях пандемии COVID-19. Временные методические рекомендации. Версия 1.19.04. — М., 2020. — 12 с. [Boyko AN, Lashch NYu, Spirin NN, et al. Vedeniye patsiyentov s rasseyannym sklerozom v usloviyakh pandemii COVID-19. Vremennyye metodicheskiye rekomendatsii. Version 1.19.04. Moscow; 2020. 12 p. (In Russ).].
  279. Rajabally YA., Goedee HS., Attarian S., Hartung H-P. Management Challenges for Chronic Dysimmune Neuropathies During the COVID-19 Pandemic. Muscle Nerve., 2020;10.1002/ mus. 26896. doi: 10.1002/mus.26896.
  280. Robertson MM, Eapen V, Rizzo R, et al. Gilles de la tourette syndrome: advice in the times of COVID-19. F1000Res. 2020;9:257. doi: 10.12688/f1000 research.23-275.2.
  281. Копишинская С. В., Жаринова Н. О., Величко И. А. и др. Основные принципы ведения неврологических пациентов в период пандемии COVID-19. Нервно-мышечные болезни 2020; 10(1):31–42. DOI: 10.17650 /2222-8721-2020 – 10 – 1 – 31 – 42.
  282. Moro E. , Deuschl G., de Visser M. , Muresanu D. et al. A Call From the European Academy of Neurology on COVID-19. Lancet Neurol., 2020; 19(6):482. doi:10.1016/ S1474-4422(20)30151-4.
  283. Needham EJ., Chou S. H-Y., Coles A.J., Menon D19 Infections. Neurocrit. Care., 2020; K Neurological Implications of COVID-1919 Infections. Neurocrit. Care., 2020; 1-5. doi: 10.1007/s tions of COVID-19 Infections. Neurocrit. Care., 2020; 1-5. doi: 10.1007/s12028.
  284. https://isaric.tghn.org/covid-19-clinical-research-resources/. COVID-19 Rapid Evidence ReviewsGroup.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Invasion of SARS-CoV-2 into brain structures

Download (255KB)
3. Fig. 2. Defeat of sensory branches n. vagus, basal nuclei and brainstem in COVID-19

Download (435KB)
4. Table 1 Subtypes of critical encephalopathy

Download (327KB)

Copyright (c) 2020 Belopasov V.V., Yachou Y., Samoilova E.M., Baklaushev V.P.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies