The role of OCT angiography in a study of retinal perfusion after endovitreal intervention due to rhegmatogenous retinal detachment

Cover Page

Cite item

Full Text

Abstract

OCT angiography is a non-invasive method of the qualitative and quantitative analysis of the retinal perfusion. After rhegmatogenous retinal detachment and vitrectomy with endotamponade, the retinal perfusion changes. Aim: To analyze the data from the clinical studies that evaluate the changes in the blood microcirculation of the retina and choroid and theireffect on the visual acuity by OCTA after vitrectomy with endotamponade due to rhegmatogenous retinal detachment. A literature search was conducted using PubMed, Cochrane Library, and Embase until April, 2020. The authors conclude that the specific changes in the retinal perfusion after vitrectomy due to regmatogenous retinal detachment using various types of tamponade may act as predictors of visual outcomes, and also may become a basis for determining the optimal time of the silicone oil tamponade resolution. Evaluation of these changes according to the data obtained using OCTA is promising and little-studied. Thus, additional clinical studies are required.

About the authors

Rinat R. Fayzrakhmanov

National Medical and Surgical Center named after N.I. Pirogov; Institute of Advanced Training of Physicians N.I. Pirogov National Medical Surgical Center

Email: rinatrf@gmail.com
ORCID iD: 0000-0002-4341-3572
SPIN-code: 1620-0083

MD, PhD, Professor

Russian Federation, Moscow

Anna V. Sukhanova

Institute of Advanced Training of Physicians N.I. Pirogov National Medical Surgical Center

Author for correspondence.
Email: anna.sukhanova.as@gmail.com
ORCID iD: 0000-0002-8482-5637
SPIN-code: 8306-6010
Russian Federation, Moscow

Oleg A. Pavlovsky

National Medical and Surgical Center named after N.I. Pirogov; Institute of Advanced Training of Physicians N.I. Pirogov National Medical Surgical Center

Email: olegpavlovskiy@yandex.ru
ORCID iD: 0000-0003-3470-6282
SPIN-code: 6781-1504

Врач-Офтальмолог, аспирант кафедры Глазных болезней.

Russian Federation, Moscow

Evgenia A. Larina

National Medical and Surgical Center named after N.I. Pirogov; Institute of Advanced Training of Physicians N.I. Pirogov National Medical Surgical Center

Email: alisme93@yandex.ru
ORCID iD: 0000-0001-5343-3350
SPIN-code: 8969-9526

postgraduate student of ophthalmology at Pirogov’s National Medical Research Center

Russian Federation, Moscow

References

  1. Jia Y, Bailey ST, Hwang TS, et al. Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci U S A. 2015;112(18):E2395–E2402. doi: 10.1073/pnas.1500185112.
  2. Provis JM. Development of the primate retinal vasculature. Prog Retin Eye Res. 2001;20(6):799–821. doi: 10.1016/s1350-9462(01)00012-x.
  3. Tan PE, Yu PK, Balaratnasingam C, et al. Quantitative confocal imaging of the retinal microvasculature in the human retina. Invest Ophthalmol Vis Sci. 2012;53(9):5728–5736. doi: 10.1167/iovs.12-10017.
  4. Campbell JP, Zhang M, Hwang TS, et al. Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography. Sci Rep. 2017;7:42201. doi: 10.1038/srep42201.
  5. Michaelson IC. Retinal circulation in man and animals. Am J Ophthalmology. 1954;38(3):419–420. doi: 10.1016/0002-9394(54)90870-3.
  6. Snodderly DM, Weinhaus RS. Retinal vasculature of the fovea of the squirrel monkey, Saimiri sciureus: three-dimensional architecture, visual screening, and relationships to the neuronal layers. J Comp Neurol. 1990;297(1):145–163. doi: 10.1002/cne.902970111.
  7. Snodderly DM, Weinhaus RS, Choi JC. Neural-vascular relationships in central retina of macaque monkeys (Macaca fascicularis). J Neurosci. 1992;12(4):1169–1193. doi: 10.1523/JNEUROSCI.12-04-01169.1992.
  8. Ames A, Li YY, Heher EC, et al. Energy metabolism of rabbit retina as related to function: high cost of Na+ transport. J Neurosci. 1992;12(3):840–853. doi: 10.1523/JNEUROSCI.12-03-00840.1992.
  9. Mihailovic N, Eter N, Alnawaiseh M. Foveal avascular zone and OCT angiography. An overview of current knowledge. Ophthalmologe. 2019;116(7):610–616. doi: 10.1007/s00347-018-0838-2.
  10. Yu DY, Cringle SJ. Oxygen distribution and consumption within the retina in vascularised and avascular retinas and in animal models of retinal disease. Prog Retin Eye Res. 2001;20(2):175–208. doi: 10.1016/s1350-9462(00)00027-6.
  11. Yu DY, Cringle SJ, Alder VA, Su EN, Yu PK. Intraretinal oxygen distribution and choroidal regulation in the avascular retina of guinea pigs. Am J Physiol. 1996;270(3 Pt 2):H965-H973. doi: 10.1152/ajpheart.1996.270.3.H965.
  12. Ahmed J, Braun RD, Dunn R, et al. Oxygen distribution in the Macaque retina. Invest Ophthalmol Vis Sci. 1993;34,516–521.
  13. Alder VA, Cringle SJ. Intraretinal and preretinal PO2 response to acutely raised intraocular pressure in cats. Am J Physiol. 1989;25:H1627–H1634. doi: 10.1152/ajpheart.1989.256.6.H1627.
  14. Pournaras CJ, Tsacopoulos M, Riva CE, et al. Diffusion of O2 in normal and ischemic retinas of anesthetized miniature pigs in normoxia and hyperoxia. Graefes Arch Clin Exp Ophthalmol. 1990;228(2):138–142. doi: 10.1007/BF00935723.
  15. Файзрахманов Р.Р. Режимы назначения анти-VEGF-препаратов при терапии неоваскулярной возрастной макулярной дегенерации // Вестник офтальмологии. — 2018. — Т.134. — №6. — С. 107–115. [Fayzrakhmanov RR. Anti-VEGF dosing regimen for neovascular age-related macular degeneration treatment. Vestnik oftal’mologii. 2018;134(6):107–115. (In Russ).] doi: 10.17116/oftalma2018134061107.
  16. Файзрахманов Р.Р. Анти-VEGF терапия неоваскулярной возрастной макулярной дегенерации: от рандомизированных исследований к реальной клинической практике // Российский офтальмологический журнал. — 2019. — Т.12. — №2. — С. 97–105. [Fayzrakhmanov RR. Anti-VEGF therapy of neovascular age-related macular degeneration: from randomized trials to routine clinical practice. Russian Ophthalmological journal. 2019;12(2):97–105. (In Russ).] doi: 10.21516/2072-0076-2019-12-2-97-105.
  17. Файзрахманов Р.Р. Озурдекс в терапии диабетического макулярного отека. Когда назначать? // Вестник офтальмологии. — 2019. — Т.135. — №4. — С. 121–127. [Fayzrakhmanov RR. Ozurdex in the treatment of diabetic macular edema. When to prescribe? Vestnik oftal’mologii. 2019;135(4):121–127. (In Russ).] doi: 10.17116/oftalma2019135041121.
  18. Файзрахманов Р.Р., Будзинская М.В. Макулярные пигменты при дегенеративных процессах сетчатки // Вестник офтальмологии. — 2018. — Т.5. — №1. — С. 134–140. [Fayzrakhmanov RR, Budzinskaya MV. Macular pigments in retinal degenerative processes. Vestnik oftal’mologii. 2018;5(1)134–140. (In Russ).] doi: 10.17116/oftalma2018134051135.
  19. Garrity ST, Iafe NA, Phasukkijwatana N, et al. Quantitative analysis of three distinct retinal capillary plexuses in healthy eyes using optical coherence tomography angiography. Invest Ophthalmol Vis Sci. 2017;58(12):5548. doi: 10.1167/iovs.17-22036.
  20. Samara WA, Say EA, Khoo CT, et al. Correlation of foveal avascular zone size with foveal morphology in normal eyes using optical coherence tomography angiography. Retina. 2015;35(11):2188–2195. doi: 10.1097/IAE.0000000000000847.
  21. Gómez-Ulla F, Cutrin P, Santos P, et al. Age and gender influence on foveal avascular zone in healthy eyes. Exp Eye Res. 2019;189:107856. doi: 10.1016/j.exer.2019.107856.
  22. Bonfiglio V, Ortisi E, Scollo D, et al. Vascular changes after vitrectomy for rhegmatogenous retinal detachment: optical coherence tomography angiography study. Acta Ophthalmol. 2019. doi: 10.1111/aos.14315.
  23. Woo JM, Yoon YS, Woo JE, et al. Foveal avascular zone area changes analyzed using OCT angiography after successful rhegmatogenous retinal detachment repair. Curr Eye Res. 2018;43(5):674–678. doi: 10.1080/02713683.2018.1437922.
  24. Hong EH, Cho H, Kim DR, et al. Changes in retinal vessel and retinal layer thickness after vitrectomy in retinal detachment via swept-source OCT angiography. Invest Ophthalmol Vis Sci. 2020;61(2):35. doi: 10.1167/iovs.61.2.35.
  25. Casswell AG, Gregor ZT. Silicone oil removal. II. Operative and postoperative complications. Br J Ophthalmol. 1987;71(12):898–902. doi: 10.1136/bjo.71.12.898.
  26. Jonas JB, Knorr HL, Rank RM, Budde WM. Retinal redetachment after removal of intraocular silicone oil tamponade. Br J Ophthalmol. 2001;85(10):1203–1207. doi: 10.1136/bjo.85.10.1203.
  27. Bassat IB, Desatnik H, Alhalel A, et al. Reduced rate of retinal detachment following silicone oil removal. Retina. 2000;20(6):597–603. doi: 10.1097/00006982-200011000-00002.
  28. Zilis JD, McCuen BW, de Juan EJ, et al. Results of silicone oil removal in advanced proliferative vitreoretinopathy. Am J Ophthalmol. 1989;108(1):15–21. doi: 10.1016/s0002-9394(14)73254-4.
  29. Casswell AG, Gregor ZJ. Silicone oil removal. I. The effect on the complications of silicone oil. Br J Ophthalmol. 1987;71(12):893–897. doi: 10.1136/bjo.71.12.893.
  30. Newsom RS, Johnston R, Sullivan PM, et al. Sudden visual loss after removal of silicone oil. Retina. 2004;24(6):871–877. doi: 10.1097/00006982-200412000-00005.
  31. Satchi K, Bolton A, Patel CK. Loss of vision once silicone oil has been removed. Retina. 2005;25(6):807–808. doi: 10.1097/00006982-200509000-00030.
  32. Williams PD, Fuller CG, Scott IU, et al. Vision loss associated with the use and removal of intraocular silicone oil. Clin Ophthalmol. 2008;2(4):955–959.
  33. Xiang W, Wei Y, Chi W, et al. Effect of silicone oil on macular capillary vessel density and thickness. Exp Ther Med. 2020;19(1):729–734. doi: 10.3892/etm.2019.8243.
  34. Lee JY, Kim JY, Lee SY, et al. Foveal microvascular structures in eyes with silicone oil tamponade for rhegmatogenous retinal detachment: a swept-source optical coherence tomography angiography study. Sci Rep. 2020;10(1):2555. doi: 10.1038/s41598-020-59504-3.
  35. Lewis GP, Charteris DG, Sethi CS, et al. The ability of rapid retinal reattachment to stop or reverse the cellular and molecular events initiated by detachment. Invest Ophthalmol Vis Sci. 2002;43(7):2412–2420.
  36. Hisatomi T1, Sakamoto T, Goto Y, et al. Critical role of photoreceptor apoptosis in functional damage after retinal detachment. Curr Eye Res. 2002;24(3):161–172. doi: 10.1076/ceyr.24.3.161.8305.
  37. Yang L, Bula D, Arroyo JG, et al. Preventing retinal detachment–associated photoreceptor cell loss in bax-deficient mice. Invest Ophthalmol Vis Sci. 2004;45(2):648–654. doi: 10.1167/iovs.03-0827.
  38. Arroyo JG, Yang L, Bula D, et al. Photoreceptor apoptosis in human retinal detachment. Am J Ophthalmol. 2005;139(4):605–610. doi: 10.1016/j.ajo.2004.11.046.
  39. Newman E, Reichenbach A. The Müller cell: a functional element of the retina. Trends Neurosci. 1996;19(8):307–312. doi: 10.1016/0166-2236(96)10040-0.
  40. Newman EA. Distribution of potassium conductance in mammalian Müller (glial) cells: a comparative study. J Neurosci. 1987;7(8):2423–2432.
  41. Newman EA. Sodium-bicarbonate cotransport in retinal Müller (glial) cells of the salamander. J Neurosci. 1991;11(12):3972–3983. doi: 10.1523/JNEUROSCI.11-12-03972.1991.
  42. Newman EA, Frambach DA, Odette LL. Control of extracellular potassium levels by retinal glial cell K+ siphoning. Science. 1984;225(4667):1174–1175. doi: 10.1126/science.6474173.
  43. Oakley B, Katz BJ, Xu Z, et al. Spatial buffering of extracellular potassium by Müller (glial) cells in the toad retina. Exp Eye Res. 1992;55(4):539–550. doi: 10.1016/s0014-4835(05)80166-6.
  44. Choi DW. Excitotoxic cell death. J Neurobiol. 1992;23(9):1261–1276. doi: 10.1002/neu.480230915.

Copyright (c) 2020 Fayzrakhmanov R.R., Sukhanova A.V., Pavlovsky O.A., Larina E.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies