Intraoperative evaluation of the intestinal wall viability

Cover Page

Cite item

Abstract

An analysis of data from national and foreign literature was carried out in terms of intraoperative determination of the intestinal viability in cases of developing the diseases in the abdominal cavity organs, associated with impaired intestinal blood supply. The basis of this work is the analysis of the modern literature on the methods of intraoperative evaluation of mesenteric ischemia. Impaired mesenteric blood supply is often the consequence of a number of reasons of developing critical conditions (mesenteric thrombosis, acute adhesive intestinal obstruction, incarcerated hernia etc.), also representing a high risk factor for lethal outcomes. Special attention is paid to the occlusion-related pathogenetic mechanism of developing mesenteric ischemia, which is accompanied by rapid development of irreversible morphological changes in the tissues and by significant disorders in the homeostasis systems of the organism. The generally available method for visual evaluation of the intestine viability is not always valid in terms of determining the degree of intensity of the ischemic changes in the intestinal wall. The algorithm of determining the intestine viability includes the determination of the intestine color, the peristaltic motions, the pulsation and the blood filling of mesenteric vessels with dynamic evaluation of these signs after the injecting the local anesthetic drug solution into the mesenterium and after “warming” the intestine with towels soaked in warm sodium chloride solution. In the current surgical conditions, a more precise method is required for intraoperative determination of the tissue viability. For the purpose of the objective evaluation of the intestinal blood supply, the recommendations include using intraoperative ultrasonic and laser Doppler flowmetry, as well as the regional transillumination angiotensometry of the intramural vessels in the small intestine. At the same time, a number of optical spectroscopy and visualization methods show high sensitivity to changes in blood microcirculation without using exogenous contrasting, which can also be successfully used when evaluating the intestinal circulation. According to data from modern literature, there is still controversy on the efficiency of various methods for intraoperative evaluation of disorders of the regional blood microcirculation and the intestine viability, which justifies the conduct of further research works.

About the authors

Nikita A. Adamenkov

Orel State University; Orel Regional Clinical Hospital

Author for correspondence.
Email: nikita-ad@mail.ru
ORCID iD: 0000-0002-0238-2941
SPIN-code: 3348-8250
Russian Federation, Orel; Orel

Andrian V. Mamoshin

Orel State University; National Medical Research Center of Surgery named after A. Vishnevsky

Email: dr.mamoshin@mail.ru
ORCID iD: 0000-0003-1787-5156
SPIN-code: 2553-1200

MD, PhD, Associate Professor

Russian Federation, Orel; Moscow

Viktor V. Dremin

Orel State University

Email: dremin_viktor@mail.ru
ORCID iD: 0000-0001-6974-3505
SPIN-code: 8990-5396

PhD, Associate Professor

Russian Federation, Orel

Elena V. Potapova

Orel State University

Email: potapova_ev_ogu@mail.ru
ORCID iD: 0000-0002-9227-6308
SPIN-code: 9315-8770

PhD, Associate Professor

Russian Federation, Orel

Valery V. Shupletsov

Orel State University

Email: valery.shupletsov@bmecenter.ru
ORCID iD: 0009-0006-0024-8518
SPIN-code: 5964-9055
Russian Federation, Orel

Yuri V. Ivanov

Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies

Email: ivanovkb83@yandex.ru
ORCID iD: 0000-0001-6209-4194
SPIN-code: 3240-4335

MD, PhD, Professor

Russian Federation, Moscow

Dmitry N. Panchenkov

Russian University of Medicine

Email: dnpanchenkov@mail.ru
ORCID iD: 0000-0001-8539-4392
SPIN-code: 4316-4651

MD, PhD, Professor

Russian Federation, Moscow

Andrey V. Dunaev

Orel State University

Email: dunaev@bmecenter.ru
ORCID iD: 0000-0003-4431-6288
SPIN-code: 8128-3093

PhD, Associate Professor

Russian Federation, Orel

References

  1. Bala M, Catena F, Kashuk J, et al. Acute mesenteric ischemia: updated guidelines of the World Society of Emergency Surgery. World J Emerge Surg. 2022;17(1):54. EDN: ALDIVR doi: 10.1186/s13017-022-00443-x
  2. Canceco J, Winokur EJ. Mesenteric ischemia: Concepts of care for the bedside nurse. Gastroenterol Nurs. 2018;41(4):305–311. doi: 10.1097/SGA.0000000000000329
  3. Bourcier S, Klug J, Nguyen LS. Non-occlusive mesenteric ischemia: Diagnostic challenges and perspectives in the era of artificial intelligence. World J Gastroenterol. 2021;27(26): 4088–4103. EDN: QSHUOB doi: 10.3748/wjg.v27.i26.4088
  4. Reintam Blaser A, Preiser JC, Fruhwald S, et al. Gastrointestinal dysfunction in the critically ill: A systematic scoping review and research agenda proposed by the section of metabolism, endocrinology and nutrition of the Endocrinology and Nutrition of the European Society of Intensive Care Medicine. Crit Care. 2020;24(1):1–17. EDN: XEBFHC doi: 10.1186/s13054-020-02889-4
  5. Клинические рекомендации. Ущемленная грыжа. Москва: Российское общество хирургов, 2023. 65 c. [Clinical Guidelines. Pinched hernia. Moscow: Russian Society of Surgeons; 2023. 65 р. (In Russ.)]
  6. Pastorino A, Alshuqayfi AA. Strangulated hernia: Book. In: Stat Pearls [Internet]. StatPearls Publishing; 2022. Режим доступа: https://pubmed.ncbi.nlm.nih.gov/32310432/. Дата обращения: 03.06.2024.
  7. Ревишвили А.Ш., Оловянный В.Е., Сажин В.П., и др. Хирургическая помощь в Российской Федерации. Москва: Доминант, 2023. 200 с. [Revishvili AS, Olovyanny VE, Sazhin VP, et al. Surgical care in the Russian Federation. Moscow: Dominant; 2023. 200 р. (In Russ.)] EDN: DTZCQK
  8. Стручков В.И. Основные проблемы при лечении ущемленных грыж // Советская медицина. 1958. Т. 22, № 1. С. 20–25. [Struchkov VI. Major problems in the treatment of impingement hernias. Sovetskaya meditsina. 1958;22(1):20–25. (In Russ.)]
  9. Кабешев Б.О., Зыблев С.Л. Острая кишечная непроходимость. Гомель, 2019. 48 с. [Kabeshev BO, Zyblev SL. Acute intestinal obstruction. Gomel’; 2019. 48 р. (In Russ.)]
  10. Regelsberger-Alvarez CM, Pfeifer C. Richter hernia: Book. In: Stat Pearls [Internet]. StatPearls Publishing; 2023. Режим доступа: https://www.ncbi.nlm.nih.gov/books/NBK537227/. Дата обращения: 03.06.2024.
  11. Seok D, Akrawe S, Mittal V. Littre’s hernia: A reason for resection. J Surg Case Rep. 2023;(1):rjac617. doi: 10.1093/jscr/rjac617
  12. Благовестнов Д.А., Драйер М., Ярцев П.А., и др. Видеолапароскопия в диагностике и лечении ущемленных паховых грыж: учебное пособие. Москва, 2021. 65 с. [Blagovestnov DA, Dreyer M, Yartsev PA, et al. Videolaparoscopy in the diagnosis and treatment of pinched inguinal hernias: A textbook. Moscow; 2021. 65 р. (In Russ.)] EDN: BHMEWR
  13. Кириенко А.И. Руководство по неотложной хирургии органов брюшной полости. Руководство для врачей / под ред. В.С. Савельева. 2-е изд., испр. и доп. Москва: Медицинское информационное агентство, 2014. 544 р. [Kirienko AI. Manual of emergency abdominal surgery. A manual for physicians. Ed. by V.S. Saveliev. 2nd revised and updated. Moscow: Meditsinskoe informatsionnoe agentstvo; 2014. 544 p. (In Russ.)]
  14. Шаповальянц С.Г., Ларичев С.Е., Сажин А.В., и др. Национальные клинические рекомендации «Острая неопухолевая кишечная непроходимость». Приняты на XII Съезде хирургов России «Актуальные вопросы хирургии», Ростов-на-Дону, 7–9 октября. Ростов-на-Дону, 2015. 36 р. [Shapovalyants SG, Larichev SE, Sazhin AV, et al. National clinical recommendations “Acute non-tumour intestinal obstruction”. Adopted at the XII Congress of Surgeons of Russia “Topical issues of surgery”, Rostov-on-Don, 7–9 Oct. Rostov-na-Donu; 2015. 36 p. (In Russ.)]
  15. Аюшинова Н., Шурыгина И., Чепурных Е., и др. Спаечная болезнь брюшной полости — междисциплинарная проблема // Врач. 2017. № 5. С. 8–10. [Ayushinova N, Shurygina I, Chepurnykh E, et al. Adhesive disease of the abdominal cavity is an interdisciplinary problem. Vrach. 2017;(5):8–10]. EDN: YPVNJR
  16. Райимов Г.Н., Косимов Ш.Х. Современные аспекты профилактики и лечения больных спаечной болезнью брюшины и ее осложнений // Экономика и социум. 2021. № 11-2. С. 1002–1014. [Rajimov GN, Kosimov SX. Modern aspects of prevention and treatment of patients with adhesive disease of the personal disease and its complications. Ekonomika i socium. 2021;(11-2):1002–1014]. EDN: SGEAZH
  17. Ten Broek RP, Issa Y, van Santbrink EJ, et al. Burden of adhesions in abdominal and pelvic surgery: Systematic review and met-analysis. BMJ. 2013;347:f5588. doi: 10.1136/bmj.f5588
  18. Catena F, de Simone B, Coccolini F, et al. Bowel obstruction: A narrative review for all physicians. World J Emerg Surg. 2019;14(1):20. EDN: MVUYHO doi: 10.1186/s13017-019-0240-7
  19. Радзинский В.Е., Соловьёва А.В., Стуров В.Г., и др. Анемии и репродуктивное здоровье: монография / под ред. В.Е. Радзинского. Москва: Meдиaбюpo Cтaтyс пpeзeнс, 2019. 200 с. [Radzinsky VE, Solovyova AV, Sturov VG, et al. Anaemia and reproductive health: A monograph. Ed. by V.E. Radzinsky. Moscow: Mediabyupo Ctatys pezens; 2019. 200 р.]. EDN: EKWAMS
  20. Ten Broek RP, Krielen P, di Saverio S, et al. Bologna guidelines for diagnosis and management of adhesive small bowel obstruction (ASBO): 2017 Update of the evidence-based guidelines from the world society of emergency surgery ASBO working group // World J Emerg Surg. 2018;(13):24. doi: 10.1186/s13017-018-0185-2
  21. Аржаева И.А., Тяпкина Д.А., Тараскин А.Ф., Тараскин А.А. Частота встречаемости спаечного процесса брюшной полости после кесарева сечения (по результатам повторных оперативных вмешательств) // Международный научно-исследовательский журнал. 2022. № 3-1. С. 102–107. [Arzhaeva IA, Tyapkina DA, Taraskin AF, Taraskin AA. Frequency of occurrence of the adhesive process of the abdominal cavity after cesarean section (according to the results of repeated surgery). Mezhdunarodnyi nauchno-issledovatel’skii zhurnal. 2022;(3-1):102–107. (In Russ.)] EDN: UWPOOI doi: 0.23670/IRJ.2022.117.3.017
  22. Ghimire P, Maharjan S. Adhesive. Small bowel obstruction: A review. JNMA. 2023;61:390–396. doi: 10.31729/jnma.8134
  23. Пашкин К.П., Мотырова Е.В., Крымов О.В., и др. Заворот брыжейки тонкой кишки, вызванный фрагментами энтероколита, у пациента с дивертикулезом тонкой кишки // Вестник хирургии имени И.И. Грекова. 2018. Т. 177, № 3. С. 59–60. [Pashkin KP, Motyrova EV, Krymov OV, et al. Small intestinal mesentery inversion caused by the enterolith fragments in the patient with small intestine diverticulosis. Vestnik khirurgii named after I.I. Grekov = Grekov’s Bull Surg. 2018;177(3):59–60]. EDN: XRSVYD doi: 10.24884/0042-4625-2018-177-3-59-60
  24. Никонорова Т.А., Ростовцев М.В., Нуднов Н.В., и др. КТ-диагностика кишечной непроходимости, вызванной инвагинацией на фоне липомы в стенке тощей кишки // Вестник рентгенологии и радиологии. 2022. Т. 103, № 1-3. С. 69–76. [Nikonorova TА, Rostovtsev MV, Nudnov NV, et al. CT diagnostics of intestinal obstruction caused by invagination due to the jejunal wall lipoma. Vestnik rentgenologii i radiologii = J Radiol Nuclear Med. 2022;103(1-3):69–76]. EDN: RGYQAR doi: 10.20862/0042-4676-2022-103-1-3-69-76
  25. Соловьев И.А., Суров Д.А., Балюра О.В., и др. Хирургическое лечение пациента с илеоцекальной инвагинацией // Вестник Национального медико-хирургического центра им. Н.И. Пирогова. 2020. Т. 15, № 3-2. С. 185–188. [Soloviev IA, Surov DA, Balura OV, et al. Case of surgical treatment of ileocecal invagination. Bulletin Pirogov National Med Surg Center. 2020;15(3-2):185–188]. EDN: HLZGYC doi: 10.25881/BPNMSC.2020.21.19.033
  26. Ачкасов С.И. Багателия З.А., Багненко С.Ф., и др. Клинические рекомендации. Острая толстокишечная непроходимость опухолевой этиологии (К56.6; С18, С19, С20), взрослые // Колопроктология. 2023. Т. 22, № 2. С. 10–31. [Achkasov SI, Bagateliya ZA, Bagnenko SF, et al. Clinical guidelines. Acute colonic obstruction of tumour aetiology (K56.6; C18, C19, C20), adults. Coloproctology. 2023;22(2):10–31]. doi: 10.33878/2073-7556-2023-22-2-10-31
  27. Хасанов А.Г., Нуртдинов М.А., Ибраев А.В. Обтурационная кишечная непроходимость, вызванная желчными камнями // Вестник хирургии имени И.И. Грекова. 2015. Т. 174, № 3. С. 20–23. [Khasanov AG, Nurtdinov MA, Ibraev AV. Obturative bowel obstruction caused by gallstones. Vestnik khirurgii named after I.I. Grekov = Grekov’s Bull Surg. 2015;174(3):20–23]. EDN: TTVQJZ doi: 10.24884/0042-4625-2015-174-3-20-23
  28. Михин И.В., Кухтенко Ю.В., Косивцов О.А. Острая кишечная непроходимость: учебное пособие. Волгоград: Изд-во ВолгГМУ, 2019. 104 с. [Mikhin IV, Kukhtenko YV, Kosivtsov OA. Acute intestinal obstruction: Textbook. Volgograd: Izdatel’stvo Volgogradskogo gosudarstvennogo meditsinskogo universiteta; 2019. 104 р. (In Russ.)] EDN: YRSUCU
  29. Demelo-Rodríguez P, Ordieres-Ortega L, Oblitas CM. Trombosis venosa mesentérica. Medicina Clínica. 2023;160(9):400–406. doi: 10.1016/j.medcle.2023.01.010
  30. Jin Y, Blikslager AT. Intestinal ischemia-reperfusion: Rooting for the SOCS? Dig Dis Sci. 2017;62(1):4–6. EDN: HBRSLB doi: 10.1007/s10620-016-4328-6
  31. Родин А.В., Плешков В.Г. Интраоперационная оценка жизнеспособности кишки при острой кишечной непроходимости // Вестник Смоленской государственной медицинской академии. 2016. Т. 15, № 1. С. 75–82. [Rodin AV, Pleshkov VG. Evaluation of the viability of the intestine during surgical treatment in the course of acute intestinal obstruction. Vestnik Smolenskoi gosudarstvennoi meditsinskoi akademii. 2016;15(1):75–82]. EDN: VVVMHR
  32. Karliczek A, Harlaar NJ, Zeebregts C, et al. Surgeons lack predictive accuracy for anastomotic leakage in gastrointestinal surgery. Int J Color Dis. 2009;24(5):569–576. EDN: YYRERS doi: 10.1007/s00384-009-0658-6
  33. Захаренко А.А., Беляев М.А., Трушин А.А., и др. Интраоперационная оценка жизнеспособности стенки кишки (обзор литературы) // Вестник хирургии имени И.И. Грекова. 2020. Т. 179, № 1. С. 82–88. [Zacharenko AA, Belyaev MA, Trushin AA, et al. Bowel viability assessment during surgery (review of the literature). Vestnik khirurgii named after I.I. Grekov = Grekov’s Bull Surg. 2020;179(1):82–88]. EDN: QJDEXH doi: 10.24884/0042-4625-2020-179-1-82-88
  34. Ведянская Д.А., Краморов Е.С., Ратников В.А., и др. Современные методы интраоперационной оценки перфузии тканей // Клиническая больница. 2022. № 2. С. 42–54. [Vedyanskaya DA, Kramorov ES, Ratnikov VA, et al. Current methods of intraoperative assessment of tissue perfusion. Clin Hospital. 2022;(2):42–54]. EDN: WJHAZM doi: 10.56547/22263071_2022_2_42
  35. Валиев А.А., Хасанов Р.Ш., Галимова Л.Л., Гатауллин И.Г. Современные методы оценки жизнеспособности стенки кишки (обзор литературы) // Колопроктология. 2023. Т. 22, № 3. С. 140–148. [Valiev AA, Hasanov RS, Galimova LL, et al. Modern methods of assessing the viability of the intestinal wall (review). Koloproktologia. 2023;22(3):140–148]. EDN: NZCELY doi: 10.33878/2073-7556-2023-22-3-140-148
  36. Moorthy RS. Doppler ultrasound. Med J Armed Forces India. 2002;58(1):1–2. doi: 10.1016/S0377-1237(02)80001-6
  37. Cooperman M, Martin EW, Carey LC. Evaluation of ischemic intestine by Doppler ultrasound. Am J Surg. 1980;139(1):73–77. doi: 10.1016/0002-9610(80)90232-9
  38. Dyess DL, Bruner BW, Donnell CA, et al. Intraoperative evaluation of intestinal ischemia: A comparison of methods. Southern Med J. 1991;84(8):966–969. doi: 10.1097/00007611-199108000-00008
  39. Bulkley GB, Zuidema GD, Hamilton SR, et al. Intraoperative determination of small intestinal viability following ischemic injury: A prospective, controlled trial of two adjuvant methods (Doppler and fluorescein) compared with standard clinical judgment. Ann Surg. 1981;193(5):628. doi: 10.1097/00000658-198105000-00014
  40. Clark LC. Monitor and control of blood and tissue oxygen tensions. Trans Am Soc Artif Intern Organs. 1956;2:41–48.
  41. Sheridan WG, Lowndes RH, Young HL. Intraoperative tissue oximetry in the human gastrointestinal tract. Am J Surg. 1990;159(3):314–319. doi: 10.1016/S0002-9610(05)81226-7
  42. Baumann KY, Church MK, Clough GF, et al. Skin microdialysis: methods, applications and future opportunities: An EAACI position paper. Clin Translational Allergy. 2019;9:24. doi: 10.1186/s13601-019-0262-y
  43. Pischke SE, Hodnebo S, Wester T, et al. Intraperitoneal microdialysis detects intestinal leakage earlier than hemodynamic surveillance and systemic inflammation in a pig model. Scand J Gastroenterol. 2021;56(2):219–227. doi: 10.1080/00365521.2020.1863459
  44. Jansson K, Jansson M, Andersson M, et al. Normal values and differences between intraperitoneal and subcutaneous microdialysis in patients after non‐complicated gastrointestinal surgery. Scand J Clin Lab Invest. 2005;65(4):273–282. doi: 10.1080/00365510510013802
  45. Birke-Sorensen H, Andersen NT. Metabolic markers obtained by microdialysis can detect secondary intestinal ischemia: An experimental study of ischemia in porcine intestinal segments. World J Surg. 2010;34(5):923–932. EDN: BYJHGD doi: 10.1007/s00268-010-0502-8
  46. Sushkov АI, Voskanyan SE, Gubarev КК. Microdialysis: Opportunities and prospects in liver transplantation (review). Modern Technologies Med. 2018;10(3):184–191. EDN: YLLJQL doi: 10.17691/stm2018.10.3.23
  47. Тимофеев И.С. Тканевой микродиализ: принципы и клиническое применение метода в интенсивной терапии // Интенсивная терапия [электронный ресурс]. 2007. № 1. [Timofeev IS. Tissue microdialysis: Principles and clinical application of the method in intensive care. J Intensive Care. 2007;(1). (In Russ.)] Режим доступа: https://icj.ru/journal/number-1-2007/104-tkanevoy-mikrodializ-principy-i-klinicheskoe-primenenie-metoda-v-intensivnoy-terapii.html?ysclid=m46ww5pcfm684886005. Дата обращения: 15.10.2024.
  48. Daly SM, Leahy MJ. ‘Go with the flow’: A review of methods and advancements in blood flow imaging. J Biophotonics. 2013;6(3):217–255. doi: 10.1002/jbio.201200071
  49. Makovik IN, Dunaev AV, Dremin VV, et al. Detection of angiospastic disorders in the microcirculatory bed using laser diagnostics technologies. J Innovative Optical Health Sci. 2018;11(1):1750016. EDN: PRIHHF doi: 10.1142/S179354581750016X
  50. Dremin VV, Zherebtsov EA, Makovik IN, et al. Laser Doppler flowmetry in blood and lymph monitoring, technical aspects and analysis. In: Dynamics and fluctuations in biomedical photonics XIV, ed. by V.V. Tuchin, K.V. Larin, M.J. Leahy, R.K. Wang. Proc. of SPIE, Vol. 10063. doi: 10.1117/12.2252427
  51. Dunaev AV, Sidorov VV, Krupatkin AI, et al. Investigating tissue respiration and skin microhaemocirculation under adaptive changes and the synchronization of blood flow and oxygen saturation rhythms. Physiological Measurement. 2014;35(4):607. EDN: SKPCTF doi: 10.1088/0967-3334/35/4/607
  52. Крупаткин А.И., Сидоров В.В. Лазерная допплеровская флоуметрия микроциркуляции крови. Москва: Медицина, 2005. 254 с. [Krupatkin AI, Sidorov VV. Laser Doppler flowmetry of blood microcirculation. Moscow: Meditsina; 2005. 254 р. (In Russ.)]
  53. Vasilev PV, Margaryants NB, Erofeev NP. Laser doppler flowmetry in the microlymphodynamics study. Modern Technologies Med. 2019;11(2):92–96. doi: 10.17691/stm2019.11.2.13
  54. Хрипун А.И., Прямиков А.Д., Шурыгин С.Н., и др. Лазерная допплеровская флоуметрия в выборе объема резекции кишечника у больных острым артериальным нарушением мезентериального кровообращения // Хирургия. Журнал им. Н.И. Пирогова. 2012;(10):40–44. [Khripun AI, Priamikov AD, Shurygin SN, et al. The possibilities of laser doppler flowmetry for the estimation of the intestine resection volume by the acute mesenteric ischemia. Zhurnal imeni N.I. Pirogova = N.I. Pirogov Russ J Surg. 2012;(10):40–44]. EDN: PIWBNF
  55. Kojima S, Sakamoto T, Nagai Y, et al. Laser speckle contrast imaging for intraoperative quantitative assessment of intestinal blood perfusion during colorectal surgery: A prospective pilot study. Surg Innovat. 2019;26(3):293–301. doi: 10.1177/1553350618823426
  56. Ambrus R, Strandby RB, Svendsen LB, et al. Laser speckle contrast imaging for monitoring changes in microvascular blood flow. Eur Sur Res. 2016;56(3-4):87–96. doi: 10.1159/000442790
  57. Golubova N, Potapova E, Seryogina E, et al. Time-frequency analysis of laser speckle contrast for transcranial assessment of cerebral blood flow. Biomed Signal Processing Control. 2023;85:104969. EDN: NSXLJD doi: 10.1016/j.bspc.2023.104969
  58. Dremin VV, Potapova EV, Mamoshin AV, et al. Monitoring oxidative metabolism while modeling pancreatic ischemia in mice using a multimodal spectroscopy technique. Laser Physics Letters. 2020;17(11):115605. EDN: YFICWQ doi: 10.1088/1612-202X/abbefa
  59. Mizeva IA, Dremin VV, Potapova EV, et al. Wavelet analysis of the temporal dynamics of the laser speckle contrast in human skin. IEEE Trans Biomed Eng. 2019;67(7):1882–1889. EDN: BEQRHZ doi: 10.1109/TBME.2019.2950323
  60. Potapova EV, Seryogina ES, Dremin VV, et al. Laser speckle contrast imaging of blood microcirculation in pancreatic tissues during laparoscopic interventions. Quantum Electronics. 2020;50(1):33. EDN: SLSWCB doi: 10.1070/QEL17207
  61. Goedhart PT, Khalilzada M, Bezemer R, et al. Sidestream Dark Field (SDF) imaging: A novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation. Optics Express. 2007;15(23):15101–15114. doi: 10.1364/OE.15.015101
  62. De Bruin AF, Kornmann VN, van der Sloot K, et al. Sidestream dark field imaging of the serosal microcirculation during gastrointestinal surgery. Colorectal Dis. 2016;18(3):103–110. doi: 10.1111/codi.13250
  63. Treu CM, Lupi O, Bottino DA, et al. Sidestream dark field imaging: The evolution of real-time visualization of cutaneous microcirculation and its potential application in dermatology. Arch Dermatol Res. 2011;303(2):69–78. EDN: FUGKEQ doi: 10.1007/s00403-010-1087-7
  64. Jansen SM, de Bruin DM, Faber DJ, et al. Applicability of quantitative optical imaging techniques for intraoperative perfusion diagnostics: A comparison of laser speckle contrast imaging, side stream dark-field microscopy, and optical coherence tomography. J Biomed Opt. 2017;22(8):086004–086004. doi: 10.1117/1.JBO.22.8.086004
  65. Aumann S, Donner S, Fischer J, et al. Optical coherence tomography (OCT): Principle and technical realization. In: High resolution imaging in microscopy and ophthalmology: New frontiers in biomedical optics [Internet]. Chapter 3.2019. Cham (CH): Springer; 2019. doi: 10.1007/978-3-030-16638-0_3
  66. Tian Y, Zhang M, Man H, et al. Study of ischemic progression in different intestinal tissue layers during acute intestinal ischemia using swept‐source optical coherence tomography angiography. J Biophoton. 2024;17(4):e202300382. EDN: KUJMXF doi: 10.1002/jbio.202300382
  67. Jansen SM, Almasian M, Wilk LS, et al. Feasibility of optical coherence tomography (OCT) for intra-operative detection of blood flow during gastric tube reconstruction. Sensors. 2018;18(5):1331. EDN: VIEGDE doi: 10.3390/s18051331
  68. Кандурова К.Ю., Дремин В.В., Жеребцов Е.А., и др. Методы оптической биопсии и их перспективы применения для интраоперационного анализа тканевого метаболизма и микроциркуляции крови в мини-инвазивной хирургии // Регионарное кровообращение и микроциркуляция. 2018. Т. 17, № 3. С. 71–79. [Kandurova KY, Dremin VV, Zherebtsov EA, et al. Optical biopsy methods and their prospects of application for intraoperative analysis of tissue metabolism and blood microcirculation in minimally invasive surgery. Region Blood Circulat Microcirculat. 2018;17(3):71–79]. EDN: YAUORV doi: 10.24884/1682-6655-2018-17-3-71-79
  69. Бабкина АС. Лазер-индуцированная флуоресцентная спектроскопия в диагностике тканевой гипоксии (обзор) // Общая реаниматология. 2019. Т. 15, № 6. С. 50–61. [Babkina AS. Laser-induced fluorescence spectroscopy in the diagnosis of tissue hypoxia (review). Obshchaya reanimatologiya = General Reanimatol. 2019;15(6):50–61]. EDN: DRDCQI doi: 10.15360/1813-9779-2019-6-50-61
  70. Dunaev AV, Dremin VV, Zherebtsov EA, et al. Individual variability analysis of fluorescence parameters measured in skin with different levels of nutritive blood flow. Med Engineering Physics. 2015;37(6):574–583. EDN: UFUZNB doi: 10.1016/j.medengphy.2015.03.011
  71. Dremin V, Sokolovski S, Rafailov E, et al. In vivo fluorescence measurements of biological tissue viability. In: Advanced photonics methods for biomedical applications. Chapter: 1. CRC Press; 2023. Р. 1–37. doi: 10.1201/9781003228950-1
  72. Zherebtsov E, Zajnulina M, Kandurova K, et al. Machine learning aided photonic diagnostic system for minimally invasive optically guided surgery in the hepatoduodenal area. Diagnostics. 2020;10(11):873. EDN: IINXFS doi: 10.3390/diagnostics10110873
  73. Захаренко А.А., Беляев М.А., Трушин А.А., и др. Комбинированная оценка жизнеспособности кишки методами лазерной допплеровской флоуметрии и лазерной флуоресцентной спектроскопии // Регионарное кровообращение и микроциркуляция. 2021. Т. 20, № 2. С. 70–76. [Zacharenko AA, Belyaev MA, Trushin AA, et al. Combined assessment of intestinal viability using laser doppler flowmetry and laser fluorescence spectroscopy. Region Blood Circulat Microcirculat. 2021;20(2):70–76]. EDN: VCUXSY doi: 10.24884/1682-6655-2021-20-2-70-76
  74. Дунаев А.В. Мультимодальная оптическая диагностика микроциркуляторно-тканевых систем организма человека: монография. Старый Оскол: ТНТ, 2022. 440 с. [Dunayev AV. Multimodal optical diagnostics of microcirculatory-tissue systems of human organism: Monograph. Stary Oskol: TNT; 2022. 440 p. (In Russ.)]
  75. Cassinotti E, Al-Taher M, Antoniou SA, et al. European Association for Endoscopic Surgery (EAES) consensus on Indocyanine Green (ICG) fluorescence-guided surgery. Surg Endoscopy. 2023;37(3):1629–1648. EDN: DOALIV doi: 10.1007/s00464-023-09928-5
  76. Nohara K, Takemura N, Ito K, et al. Bowel perfusion demonstrated using indocyanine green fluorescence imaging in two cases of strangulated ileus. Clin J Gastroenterol. 2022;15(5):886–889. EDN: RCEIVJ doi: 10.1007/s12328-022-01656-y
  77. Nusrath S, Kalluru P, Shukla S, et al. Current status of indocyanine green fluorescent angiography in assessing perfusion of gastric conduit and oesophago-gastric anastomosis. Int J Surg. 2024;110(2):1079–1089. EDN: JPOQQR doi: 10.1097/JS9.0000000000000913
  78. Беджанян А.Л., Петренко К.Н., Сумбаев А.А., и др. Роль ICG-ангиографии в профилактике несостоятельности колоректальных анастомозов // Хирургия. Журнал им. Н.И. Пирогова. 2023. № 9-2. С. 25–32. [Bedzhanyan AL, Petrenko KN, Sumbaev AA, et al. ICG angiography in prevention of colorectal anastomotic leakage. Zhurnal imeni N.I. Pirogova = N.I. Pirogov Russ J Surg. 2023;(9-2):25–32]. EDN: UTXIXG doi: 10.17116/hirurgia202309225
  79. Сергеев А.Н., Морозов А.М., Чарыев Ю.О., и др. О возможности применения медицинской термографии в клинической практике // Профилактическая медицина. 2022. Т. 25, № 4. С. 82–88. [Sergeev AN, Morozov AM, Charyev YuO, et al. On the possibility of using medical thermography in clinical practice. Russ J Preventive Med. 2022;25(4):82–88]. EDN: ENVGDT doi: 10.17116/profmed20222504182
  80. Bernard V, Staffa E, Mornstein V, et al. Infrared camera assessment of skin surface temperature-effect of emissivity. Physica Medica. 2013;29(6):583–591. doi: 10.1016/j.ejmp.2012.09.003
  81. Сушков А.И., Мальцева А.П., Рудаков В.С., и др. Применение инфракрасной термографии в области донорства и трансплантации органов: состояние вопроса и первые собственные результаты // Клиническая и экспериментальная хирургия. Журнал имени академика Б.В. Петровского. 2021. Т. 9, № 2. С. 96–107. [Sushkov AI, Mal’tseva AP, Rudakov VS, et al. The use of infrared thermography in organ donation and transplantation: State of the issue and own results. Clin Exp Surg Petrovsky J. 2021;9(2):96–107]. EDN: LXZZSD doi: 10.33029/2308-1198-2021-9-2-96-107
  82. Tattersall GJ. Infrared thermography: A non-invasive window into thermal physiology. Comp Biochem Physiol A Mol Integr Physiol. 2018;202:78–98. EDN: XYWZRD doi: 10.1016/j.cbpa.2016.02.022.
  83. Repež A, Oroszy D, Arnež ZM. Continuous postoperative monitoring of cutaneous free flaps using near infrared spectroscopy. J Plast Reconstr Aesthet Surg. 2008;61(1):71–77. EDN: RRMEYF doi: 10.1016/j.bjps.2007.04.003
  84. Park J, Seok HS, Kim SS, et al. Photoplethysmogram analysis and applications: An integrative review. Front Physiol. 2022;12:808451. EDN: XVVLXU doi: 10.3389/fphys.2021.808451
  85. Kashchenko VA, Zaytsev VV, Ratnikov VA, et al. Intraoperative visualization and quantitative assessment of tissue perfusion by imaging photoplethysmography: Comparison with ICG fluorescence angiography. Biomed Opt Express. 2022;13(7):3954–3966. EDN: CUMLWT doi: 10.1364/BOE.462694
  86. Kamshilin AA, Zaytsev VV, Lodygin AV, et al. Imaging photoplethysmography as an easy-to-use tool for monitoring changes in tissue blood perfusion during abdominal surgery. Sci Rep. 2022;12(1):1143. EDN: HKITED doi: 10.1038/s41598-022-05080-7
  87. Machikhin AS, Volkov MV, Khokhlov DD, et al. Exoscope-based videocapillaroscopy system for in vivo skin microcirculation imaging of various body areas. Biomed Opt Express. 2021;12(8):4627–4636. EDN: OVLQXZ doi: 10.1364/BOE.420786
  88. Barberio M, Benedicenti S, Pizzicannella M, et al. Intraoperative guidance using hyperspectral imaging: A review for surgeons. Diagnostics. 2021;11(11):2066. EDN: SMCGWL doi: 10.3390/diagnostics11112066
  89. Pham QT, Liou NS. The development of on-line surface defect detection system for jujubes based on hyperspectral images. Comp Electron Agricult. 2022;194(7):106743. EDN: KYUDBE doi: 10.1016/j.compag.2022.106743
  90. Zherebtsov EA, Dremin VV, Popov AP, et al. Hyperspectral imaging of human skin aided by artificial neural networks. Biomed Opt Express. 2019;10(7):3545–3559. EDN: ZHSMJR doi: 10.1364/BOE.10.003545
  91. Dremin VV, Marcinkevics Z, Zherebtsov EA, et al. Skin complications of diabetes mellitus revealed by polarized hyperspectral imaging and machine learning. IEEE Trans Med Imaging. 2021;40(4):1207–1216. EDN: CFLLBP doi: 10.1109/TMI.2021.3049591
  92. Dremin VV, Zherebtsov EA, Popov AP, et al. Hyperspectral imaging of diabetes mellitus skin complications. In: Biomedical Photonics for Diabetes Research. CRC Press; 2022. Р. 177–195. doi: 10.1201/9781003112099-8
  93. Mehdorn M, Köhler H, Rabe SM, et al. Hyperspectral imaging (HSI) in acute mesenteric ischemia to detect intestinal perfusion deficits. J Surg Res. 2020;254:7–15. doi: 10.1016/j.jss.2020.04.001
  94. Zhang L, Huang D, Chen X, et al. Visible near-infrared hyperspectral imaging and supervised classification for the detection of small intestinal necrosis tissue in vivo. Biomed Opt Express. 2022;13(11):6061–6080. doi: 10.1364/boe.470202
  95. Zhang L, Huang D, Chen X, et al. Discrimination between normal and necrotic small intestinal tissue using hyperspectral imaging and unsupervised classification. J Biophoton. 2023;16(7):e202300020. EDN: DRAJBG doi: 10.1002/jbio.202300020
  96. Адаменков Н.А., Мамошин А.В., Дремин В.В., и др. Оценка перфузии кишечной стенки в условиях ишемии с применением метода гиперспектральной визуализации // Оперативная хирургия и клиническая анатомия. 2024. Т. 8, № 1. С. 5–13. [Adamenkov NA, Mamoshin AV, Dremin VV, et al. Assessment of intestinal wall perfusion under ischemic conditions using hyperspectral imaging. Russ J Operative Surg Clin Anatomy. 2024;8(1):5–13]. EDN: FKKIQR doi: 10.17116/operhirurg202480115

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».