COVID-19. Aetiology, pathogenesis, diagnosis and treatment

Cover Page

Cite item

Full Text

Abstract

COVID-19 (Coronavirus disease 2019) is a new epidemic infectious disease characterized by a relatively high contagiousness and a high probability of life-threatening complications such as acute respiratory distress syndrome (ARDS), acute respiratory and multiple organ failure. The causative agent of the disease is the enveloped zoonotic RNA virus known as SARS-CoV-2. Together with the SARS-CoV and MERS-CoV viruses, which cause severe acute respiratory syndrome and the Middle East respiratory syndrome, respectively, it belongs to the Coronaviridae family, the genus Betacoronavirus. The COVID-19 epidemic has spread rapidly around the world and currently hit 213 countries with more than 1.6 million confirmed cases, of which more than 90.000 have died so far. In Russian Federation, SARS-CoV-2 infection is included in the list of diseases that pose a danger to others, along with especially dangerous infections. The virus is transmitted by airborne droplets, airborne dust and contact routes, therefore, to protect medical staff it is necessary to use individual protective suits and accessories, with protection of the respiratory tract and eyes, disinfection of hands and surfaces as when working with the BSL-2 microorganisms. The diagnosis of COVID-19 is confirmed using real-time RT-PCR diagnostics detecting the presence of viral RNA. Clinical manifestations of COVID-19 vary from mild and moderate (pneumonia without signs of hypoxemia and impaired O2 saturation, 80% of all cases), to severe (15% of cases, O2 saturation 89–93%) and extremely severe (5% of cases, ARDS, multiple organ failure, mechanical ventilation and resuscitation are necessary). The typical clinical presentation of COVID19 patients includes the following: severe fever, dry cough, respiratory failure, combined with lymphopenia and thrombocytopenia, normal procalcitonin, elevated levels of ferritin and CRP in the blood with signs of bilateral, polysegmental pneumonia and the “ground glass” opacity on CT. Even in the absence of an unfavorable epidemiological anamnesis, these clinical signs can be recommended to admit the patient to an infectious isolation ward where he or she would wait for the results of PCR diagnostics and the diagnosis of COVID-19 be confirmed/ ruled out. Currently, no SARS-CoV-2-specific therapy is available for COVID-19 patients; the only method that has proven effective in several investigational trials is transfusion of convalescent plasma with high titers of neutralizing antibodies. A number of innovative treatments appear promising and include the use of neutralizing monoclonal antibodies, ACE2-derived agents, as well as MSC- and NK-cell based cell therapies.

About the authors

V. P. Baklaushev

Federal Scientific and Clinical Center of Specialized Types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia; Research Institute of Pulmonology of the Federal Medical and Biological Agency of Russia

Author for correspondence.
Email: baklaushev.vp@fnkc-fmba.ru
ORCID iD: 0000-0003-1039-4245
SPIN-code: 3968-2971
https://fnkc-fmba.ru/about/komanda-upravleniya/

MD, PhD, Chief Scientific Officer

Russian Federation, Moscow

S. V. Kulemzin

Institute of Molecular and Cellular Biology Siberian Branch Russian Academy of Science

Email: s.kulemzin@gmail.com
ORCID iD: 0000-0002-4706-623X
SPIN-code: 8756-5765

к.б.н., старший научный сотрудник лаборатории иммуногенетики

Russian Federation, Novosibirsk

А. А. Gorchakov

Institute of Molecular and Cellular Biology Siberian Branch Russian Academy of Science

Email: andrey.gorchakov@gmail.com
ORCID iD: 0000-0003-2830-4236
Russian Federation, Novosibirsk

V. N. Lesnyak

Federal Scientific and Clinical Center of Specialized Types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia

Email: lesnyak_kb83@mail.ru
SPIN-code: 5483-3113

к.м.н., зав. отделением рентгенологии

Russian Federation, Moscow

G. M. Yusubalieva

Federal Scientific and Clinical Center of Specialized Types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia

Email: gaukhar@gaukhar.org
ORCID iD: 0000-0003-3056-4889
SPIN-code: 1559-5866

к.м.н., ст. науч. сотр. лаборатории клеточных технологий

Russian Federation, Moscow

A. G. Sotnikova

Federal Scientific and Clinical Center of Specialized Types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia; Research Institute of Pulmonology of the Federal Medical and Biological Agency of Russia

Email: sotnikoffaa@gmail.com

к.м.н., зав. отделением пульмонологии

Russian Federation, Moscow

References

  1. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5(4):536–544. doi: 10.1038/s41564-020-0695-z.
  2. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–733. doi: 10.1056/NEJMoa2001017.
  3. Coronavirus disease (COVID-19) Pandemic. Avalable from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019.
  4. Yang Y, Yang MH, Shen CG, et al. Evaluating the accuracy of different respiratory specimens in the laboratory diagnosis and monitoring the viral shedding of 2019- nCoV infections. medRxiv. 2020; published online Feb 17. doi: 10.1101/2020.02.11.20021493.
  5. Временные методические рекомендации Минздрава России: Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19), версия 5 (08.04.2020). — М.: Минздрав РФ, 2020. — 122 с. [Vremennyye metodicheskiye rekomendatsii Minzdrava Rossii: Profilaktika, diagnostika i lecheniye novoy koronavirusnoy infektsii (COVID-19), versiya 5 (08.04.2020). Moscow: Ministry of health of the Russian Federation; 2020. 122 р. (In Russ).]
  6. Handbook of COVID-19 prevention and treatment. The First Affiliated Hospital, Zhejiang University School of Medicine, 2020. Available from: https://covid-19.alibabacloud.com.
  7. COVID-19: Interim Guidance on Management Pending Empirical Evidence. From an American Thoracic Society‐led International Task Force. Avalable from: https://www.thoracic.org/professionals/clinical-resources/disease-related-resources/covid-19-guidance.pdf.
  8. Online resource. Avalable from: https://clinicaltrials.gov/ct2/results?cond=COVID-19.
  9. Safety and Immunogenicity Study of 2019-nCoV Vaccine (mRNA-1273) for Prophylaxis SARS CoV-2 Infection. ClinicalTrials.gov; 2020. Identifier: NCT04283461.
  10. Li Q, Guan X, Wu P, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020;382(13):1199–1207. doi: 10.1056/NEJMoa2001316.
  11. Постановление Правительства РФ от 31 января 2020 г. № ٦٦ «О внесении изменения в перечень заболеваний, представляющих опасность для окружающих». [RF Government Regulation Postanovlenie Pravitel›stva RF ot 31.01.2020 № 66 «O vnesenii izmeneniya v perechen’ zabolevaniy, predstavlyayushchikh opasnost’ dlya okruzhayushchikh» dated 2020 January 31. (In Russ).] Доступно по: https://base.garant.ru/73492109/. Ссылка активна на 20.03.2020.
  12. Wang K, Chen W, Zhou YS, et al. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. bioRxiv. 2020. doi: https://doi.org/10.1101/2020.03.14.988345.
  13. Bian H, Zheng ZH, Wei D, et al. Meplazumab treats COVID-19 pneumonia: an open-labelled, concurrent controlled add-on clinical trial. bioRxiv. 2020. doi: https://doi.org/10.1101/2020.03.21.20040691.
  14. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020. doi: 10.1016/j.cell.2020.02.052.
  15. Tisoncik JR, Korth M, Simmons CP, et al. Into the eye of the cytokine storm. Microbiol Mol Biol Rev. 2012;76(1):16–32. doi: 10.1128/MMBR.05015-11.
  16. Zhang C, Wu Z, Li JW, et al. The cytokine release syndrome (CRS) of severe COVID-19 and Interleukin-6 receptor (IL-6R) antagonist Tocilizumab may be the key to reduce the mortality. Int J Antimicrob Agents. 2020:105954. doi: 10.1016/j.ijantimicag.2020.105954.
  17. Da Silva AM, Kaulbach HC, Chuidian FS, et al. Shock and multiple-organ dysfunction after self-administration of salmonella endotoxin. N Engl J Med. 1993;328:1457–1460. doi: 10.1056/NEJM199305203282005.
  18. Suntharalingam G, Perry MR, Ward S, et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med. 2006;355:1018–1028. doi: 10.1056/NEJMoa063842.
  19. Singh N, Hofmann TJ, Gershenson Z, et al. Monocyte lineage-derived IL-6 does not affect chimeric antigen receptor T-cell function. Cytotherapy. 2017;19(7):867–880. doi: 10.1016/j.jcyt.2017.04.001.
  20. Giavridis T, van der Stegen SJ, Eyquem J, et al. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med. 2018;24(6):731–738. doi: 10.1038/s41591-018-0041-7.
  21. Sterner RM, Sakemura R, Cox MJ, et al. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood. 2019;133(7):697–709. doi: 10.1182/blood-2018-10-881722.
  22. Channappanavar R, Fehr AR, Vijay R, et al. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe. 2016;19(2):181–193. doi: 10.1016/j.chom.2016.01.007.
  23. Yang Y, Shen C, Li J, et al. Exuberant elevation of IP-10, MCP-3 and IL-1ra during SARS-CoV-2 infection is associated with disease severity and fatal outcome. medRxiv. 2020. doi: https://doi.org/10.1101/2020.03.02.20029975.
  24. Zhang B, Zhou X, Zhu C, et al. Immune phenotyping based on neutrophil-to-lymphocyte ratio and IgG predicts disease severity and outcome for patients with COVID-19. medRxiv. 2020. doi: 10.1101/2020.03.12.20035048.
  25. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;15;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5.
  26. Cao Y, Liu X, Xiong L, Cai K. Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2: a systematic review and meta-analysis. J Med Virol. 2020. doi: 10.1002/jmv.25822.
  27. Ling W. C-reactive protein levels in the early stage of COVID-19. Med Mal Infect. 2020. doi: 10.1016/j.medmal.2020.03.007.
  28. Soldati G, Smargiassi A, Inchingolo R, et al. Proposal for international standardization of the use of lung ultrasound for COVID-19 patients; a simple, quantitative, reproducible method. J Ultrasound Med. 2020. doi: 10.1002/jum.15285.
  29. Cao B, Wang Y, Wen D, et al. A Trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med. 2020. doi: 10.1056/NEJMoa2001282.
  30. Gautret P, Lagier JC, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020:105949. doi: 10.1016/j.ijantimicag.2020.105949.
  31. Colson P, Rolain JM, Lagier JC, et al. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Int J Antimicrob Agents. 2020 Mar 4:105932. doi: 10.1016/j.ijantimicag.2020.105932.
  32. Darren D, Gates S, Morris T. Statistical review of Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial (Version 1.1). Zenodo. 2020. doi: 10.5281/zenodo.3725560.
  33. Study of open label losartan in COVID-19. ClinicalTrials.gov; 2020. Identifier: NCT04335123.
  34. Recombinant human angiotensin-converting enzyme 2 (rhACE2) as a treatment for patients with COVID-19. ClinicalTrials.gov; 2020. Identifier: NCT04287686. doi: 10.31525/ct1-nct04287686.
  35. Caly L, Druce JD, Catton MG, et al. The FDA-approved Drug Ivermectin inhibits the replication of SARS-1 CoV-2 in vitro. Antiviral Research. 2020. doi: 10.1016/j.antiviral.2020.104787.
  36. Evaluation of the Efficacy and Safety of Sarilumab in Hospitalized Patients With COVID-19. ClinicalTrials.gov; 2020. Identifier: NCT04315298.
  37. Treatment of Moderate to Severe Coronavirus Disease (COVID-19) in Hospitalized Patients. ClinicalTrials.gov; 2020. Identifier: NCT04321993.
  38. Evaluation of the Efficacy and Safety of Sarilumab in Hospitalized Patients With COVID-19. ClinicalTrials.gov; 2020. Identifier: NCT04315298.
  39. Treatment of COVID-19 Patients With Anti-interleukin Drugs (COV-AID). ClinicalTrials.gov; 2020. Identifier: NCT04330638.
  40. A multicenter, randomized controlled trial for the efficacy and safety of tocilizumab in the treatment of new coronavirus pneumonia (COVID-19). Chinese Clinical trial registry: ChiCTR2000029765. ChiCTR; 2020.
  41. Efficacy and Safety of Emapalumab and Anakinra in Reducing Hyperinflammation and Respiratory Distress in Patients With COVID-19 Infection. ClinicalTrials.gov; 2020. Identifier: NCT04324021.
  42. A clinical study for the efficacy and safety of Adalimumab Injection in the treatment of patients with severe novel coronavirus pneumonia (COVID-19). Chinese Clinical trial registry: ChiCTR2000030089. ChiCTR; 2020.
  43. Izana starts compassionate use study of potential Covid-19 drug. Available from: https://www.clinicaltrialsarena.com/news/izana-namilumab-covid-19-study/.
  44. Novant Health operates a fully integrated healthcare system throughout four states. Available from: https://www.cytodyn.com/newsroom/press-releases/detail/411/novant-health-initiates-phase-2-covid-19-trial-with.
  45. Mehta Р, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020. doi: 10.1016/S0140-6736(20)30628-0.
  46. Stebbing J, Phelan A, Griffin I, et al. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet. 2020. doi: 10.1016/S1473-3099(20)30132-8.
  47. Wu D, Yang XO. TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib. J Microbiol, Immunol Infect. 2020. doi: 10.1016/j.jmii.2020.03.005.
  48. Safety and Efficacy of Baricitinib for COVID-19. ClinicalTrials.gov; 2020. Identifier: NCT04340232.
  49. Baricitinib in Symptomatic Patients Infected by COVID-19: an Open-label, Pilot Study. (BARI-COVID). ClinicalTrials.gov; 2020. Identifier: NCT04320277.
  50. Study of the Efficacy and Safety of Ruxolitinib to Treat COVID-19 Pneumonia. ClinicalTrials.gov; 2020. Identifier: NCT04331665.
  51. Praveen D, Chowdary PR, Aanandhi MV. Baricitinib — a januase kinase inhibitor - not an ideal option for management of COVID 19. Int J Antimicrob Agents. 2020 Apr 4 [Online ahead of print] doi: 10.1016/j.ijantimicag.2020.105967.
  52. Zhang R, Wang X, Ni L, et al. COVID-19: Melatonin as a potential adjuvant treatment. Life Sci. 2020 Mar 23:117583. doi: 10.1016/j.lfs.2020.117583.
  53. Zhang B, Liu S, Tan T, et al. Treatment with convalescent plasma for critically ill patients with SARS-CoV-2 infection. Chest. 2020. pii: S0012-3692(20)30571-7. doi: 10.1016/j.chest.2020.03.039.
  54. Duan K, Liu B, Li C, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci U S A. 2020 Apr 6. pii: 202004168. doi: 10.1073/pnas.2004168117.
  55. Shen C, Wang Z, Zhao F, et al. Treatment of 5 Critically Ill Patients With COVID-19 With Convalescent Plasma. JAMA. 2020 Mar 27. doi: 10.1001/jama.2020.4783.
  56. Hyperimmune plasma for critical patients with COVID-19 (COV19-PLASMA). ClinicalTrials.gov; 2020. Identifier: NCT04321421.
  57. Convalescent plasma to limit coronavirus associated complications. ClinicalTrials.gov; 2020. Identifier: NCT04325672.
  58. Anti-SARS-CoV-2 inactivated convalescent plasma in the treatment of COVID-19. ClinicalTrials.gov; 2020. Identifier: NCT04292340. doi: 10.31525/ct1-nct04292340.
  59. Safety in convalescent plasma transfusion to COVID-19. ClinicalTrials.gov; 2020. Identifier: NCT04333355.
  60. Online resource. Available from: https://clinicaltrials.gov/ct2/results?cond=COVID-19%2C++Convalescent+Plasma+&term=&cntry=&state=&city=&dist=.
  61. Jiang S, Hillyer C, Du L, et al. Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses. Science Society. 2020. doi: 10.1016/j.it.2020.03.007.
  62. Горшкова Е.Н., Василенко Е.А., Тиллиб С.В., Астраханцева И.В. Однодоменные антитела и биоинженерные препараты на их основе: новые возможности для диагностики и терапии // Медицинская иммунология. — 2016. — Т.18. — №6. — С. 505–520. [Gorshkova EN, Vasilenko EA, Tillib SV, Astrakhantseva IV. Single domain antibodies and bioengineering drugs on their basis: new opportunities for diagnostics and therapy. Meditsinskaya immunologiya. 2016;18(6):505–520. (In Russ).] doi: 10.15789/1563-0625-2016-6-505-520.
  63. Krah S, Schröter C, Zielonka S, Empting M, Valldorf B, Kolmar H. Single-domain antibodies for biomedical applications. Immunopharmacol Immunotoxicol. 2016;38(1):21-8.
  64. Wrapp D, de Vlieger D, Corbett KS, et al. Structural Basis for Potent Neutralization of Betacoronaviruses by Single-domain Camelid Antibodies. medRxiv. 2020. doi: 10.1101/2020.03.26.010165.
  65. Lafaye P, Li T. Use of camel single-domain antibodies for the diagnosis and treatment of zoonotic diseases. Comp Immunol Microbiol Infect Dis. 2018;60:17–22.
  66. Lei C, Fu W, Qian K, et al. Potent neutralization of 2019 novel coronavirus by recombinant ACE2-Ig. BioRxiv. 2020. doi: 10.1101/2020.02.01.929976.
  67. Toonkel RL, Hare JM, Matthay MA, Glassberg MK. Mesenchymal stem cells and idiopathic pulmonary fibrosis: potential for clinical testing. Am J Respir Crit Care Med. 2013;188(2):133–140. doi: 10.1164/rccm.201207-1204PP.
  68. Averyanov A, Koroleva I, Konoplyannikov M, et al. First-in-human high-cumulative-dose stem cell therapy in idiopathic pulmonary fibrosis with rapid lung function decline. Stem Cells Transl Med. 2020;9(1):6–16. doi: 10.1002/sctm.19-0037.
  69. Bernardo ME, Fibbe WE. Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell. 2013;13(4):392–402. doi: 10.1016/j.stem.2013.09.006.
  70. Wilson JG, Liu KD, Zhuo H, et al. Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. Lancet Respir Med. 2015;3(1):24–32. doi: 10.1016/S2213-2600(14)70291-7.
  71. Leng Z, Zhu R, Hou W, et al. Transplantation of ACE2- mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis. 2020;11(2):216–228. doi: 10.14336/AD.2020.0228.
  72. Stem cell educator therapy treat the viral inflammation caused by Severe Acute Respiratory Syndrome Coronavirus 2. ClinicalTrials.gov; 2020. Identifier: NCT04299152. doi: 10.31525/ct1-nct04299152.
  73. Cell therapy using umbilical cord-derived mesenchymal stromal cells in SARS-CoV-2-related ARDS (STROMA-CoV2). ClinicalTrials.gov; 2020. Identifier: NCT04333368.
  74. Sorrento to provide manufacturing support to celularity as CYNK-001 NK cell trial for COVID-19 begins enrolling patients [news release]. San Diego, CA.; 2020. Available from: globenewswire.com/news-release/2020/04/02/2010998/0/en/SORRENTO-TO-PROVIDE-MANUFACTURING-SUPPORT-TO-CELULARITY-AS-CYNK-001-NK-CELL-TRIAL-FOR-COVID-19-BEGINS-ENROLLING-PATIENTS.html.
  75. Xconomy National. Celularity to test natural killer cell therapy for cancer against COVID. Xconomy National website; 2020. Available from: xconomy.com/national/2020/04/02/celularity-to-test-natural-killer-cell-therapy-for-cancer-against-covid/.
  76. A Phase I/II Study of Universal Off-the-shelf NKG2D-ACE2 CAR-NK Cells for Therapy of COVID-19. ClinicalTrials.gov; 2020. Identifier: NCT04324996.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. CT diagnosis of COVID-19

Download (790KB)

Copyright (c) 2020 Baklaushev V.P., Kulemzin S.V., Gorchakov А.А., Lesnyak V.N., Yusubalieva G.M., Sotnikova A.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies