Post-COVID asthenia, sarcopenia and muscle weakness among geriatric patients

Cover Page

Cite item

Full Text

Abstract

Sarcopenia, asthenia, and motor activity restriction are common among geriatric patients in the post-COVID period. The SARS-CoV-2 virus triggers a cytokine storm in the human body and induces a direct viral effect on skeletal muscles. Manifestations of post-acute sequelae of COVID-19 (PASC) can include organ and system dysfunction, asthenia, muscle weakness, dyspnea, chest pain, cognitive impairment, depression, anxiety, and sleep disorders. Hypoxemia, comorbidity, and prolonged inactivity contribute to changes in the structure and functionality of the muscular fibers. One of the recent studies is ALMI-index, which indicates that a decrease in muscle mass of the upper and lower extremities may cause functional limitations in patients with long-COVID conditions. Rehabilitation of patients with post-COVID syndrome involves daily exercise with weights, considering load tolerance; mandatory medication; and nutritional and psychological support.

About the authors

Vladimir V. Belopasov

Astrakhan State Medical University

Author for correspondence.
Email: belopasov@yandex.ru
ORCID iD: 0000-0003-0458-0703
SPIN-code: 6098-1321

MD, PhD, Professor

Russian Federation, Astrakhan

Daria K. Veselova

Clinic City

Email: dorozhe_zolota007@mail.ru
ORCID iD: 0000-0002-9777-5130
SPIN-code: 7599-0820
Russian Federation, Astrakhan

References

  1. Веселова Д.К., Белопасов В.В. Старческая астения и старческая апатия в повседневной клинической практике в условиях пандемии новой коронавирусной инфекции COVID-19 // Клиническая практика. 2022. Т. 13, № 1. C. 66–78. [Veselova DK, Belopasov VV. Frailty and senile apathy in the everyday clinical practice in the conditions of COVID-19. J Clin Pract. 2022;13(1): 66–78]. EDN: ZRCWPY doi: 10.17816/clinpract104831
  2. Dennis A, Wamil M, Alberts J, et al. Multiorgan impairment in low-risk individuals with post-COVID-19 syndrome: A prospective, community-based study. BMJ Open. 2021;11(3):e048391. EDN: GWXGCT doi: 10.1136/bmjopen-2020-048391
  3. Kim JW, Yoon JS, Kim EJ, et al. Prognostic implication of baseline sarcopenia for length of hospital stay and survival in patients with coronavirus disease 2019. J Gerontol A Biol Sci Med Sci. 2021;76(8):e110–e116. doi: 10.1093/gerona/glab085
  4. Rovere Querini P, De Lorenzo R, Conte C. Post-COVID-19 follow-up clinic: Depicting chronicity of a new disease. Acta Biomed. 2020;20(9-S):22–28. doi: 10.23750/abm.v91i9-S.10146
  5. Rovere-Querini P, Tresoldi C, Conte C, et al. Biobanking for COVID-19 research. Panminerva Med. 2022;64(2):244–252. EDN: OPROIG doi: 10.23736/S0031-0808.20.04168-3
  6. Malmstrom TK, Morley JE. SARC-F: A simple questionnaire to rapidly diagnose sarcopenia. JAMDA. 2013;14(8):531–532. doi: 10.1016/j.jamda.2013.05.018
  7. Rubenstein LZ, Harker JO, Salva A, et al. Screening for undernutrition in geriatric practice: Developing the short-form mini-nutritional assessment (MNA-SF). J Gerontol. 2001;56(6):M366–372. doi: 10.1093/gerona/56.6.m366
  8. Ackermann M, Verleden SE, Kuehnel M, et al. Pulmonary vascular endothlialitis, thombosis, and angiogenesis in COVID-19. NEJM. 2020;383(2):120–128. doi: 10.1056/NEJMoa2015432
  9. Puntmann VO, Carerj ML, Wieters I, et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(11):1265–1273. EDN: RIODCA doi: 10.1001/jamacardio.2020.3557
  10. Damanti S, Cilla M, Cilona M, et al. Prevalence of long COVID-19 symptoms after hospital dischargein frail and robust patients. Front Med. 2022;(9):834887. EDN: OMKZAO doi: 10.3389/fmed.2022.834887
  11. Tenforde MW, Kim SS, Lindsell CJ, et al. Symptom duration and risk factors for delayed return to usual health among outpatients with COVID- 19 in a multistate health care systems network--United States. Morbid Mortal Wkly Rep. 2020;69(30):993–998. doi: 10.15585/mmwr.mm6930e1
  12. Raveendran AV. Long COVID-19: Challenges in the diagnosis and proposed diagnostic criteria. Diabetes Metab Syndr. 2021;15(1):145–146. doi: 10.1016/j.dsx.2020.12.025
  13. Белопасов В.В., Яшу Я., Самойлова Е.М., Баклаушев В.П. Поражение нервной системы при СOVID-19 // Клиническая практика. 2020. Т. 11, № 2. C. 60–80. [Belopasov VV, Yashu Y, Samoilova EM, Baklaushev VP. Nervous system damage in SOVID-19. J Clin Pract. 2020;11(2):60–80]. EDN: JLSSLO doi: 10.17816/clinpract34851
  14. Piotrowicz K, Gąsowski J, Michel JP, Veronese N. Post-COVID-19 acute sarcopenia: Physiopathology and management. Aging Clin Exp Res. 2021;33(10):2887–2898. EDN: RHRMZN doi: 10.1007/s40520-021-01942-8
  15. De Giorgio MR, Di Noia S, Morciano C, Conte D. The impact of SARS-CoV-2 on skeletal muscles. Acta Myol. 2020;39(4): 307–312. doi: 10.36185/2532-1900-034
  16. Van Seben R, Reichardt LA, Aarden JJ, et al. The course of geriatric syndromes in acutely hospitalized older adults: The hospital-ADL study. J Am Med Dir Assoc. 2019;20(2):152–158.e2. doi: 10.1016/j.jamda.2018.08.003
  17. Reichardt LA, van Seben R, Aarden JJ, et al. Trajectories of cognitive-affective depressive symptoms in acutely hospitalized older adults: The hospital-ADL study. J Psychosom Res. 2019;(120):66–73. doi: 10.1016/j.jpsychores.2019.03.011
  18. Hoyer EH, Needham DM, Atanelov L, et al. Association of impaired functional status at hospital discharge and subsequent rehospitalization. J Hosp Med. 2014;9(5):277–282. doi: 10.1002/jhm.2152
  19. Bellelli G, Rebora P, Valsecchi MG, et al.; COVID-19 Monza Team Members. Frailty index predicts poor outcome in COVID-19 patients. Intensive Care Med. 2020;46(8):1634–1636. EDN: SEPGUS doi: 10.1007/s00134-020-06087-2
  20. Jones R, Davis A, Stanley B, et al. Risk predictorsand symptom features of long COVID within a broad primary care patientpopulation including both tested and untested patients. Pragmat Obs Res. 2021;(12):93–104. doi: 10.2147/POR.S31618638
  21. Shinohara T, Saida K, Tanaka S, Murayama A. Association between frailty and changes in lifestyle and physical or psychological conditions among older adults affected by the coronavirus disease 2019 countermeasures in Japan. Geriatr Gerontol Int. 2021;21(1):39–42. doi: 10.1111/ggi.14092
  22. Damanti S, Azzolino D, Roncaglione C, et al. Efficacy of nutritional interventions as stand-alone or synergistic treatments with exercise for the management of sarcopenia. Nutrients. 2019;11(9):1991. doi: 10.3390/nu11091991
  23. Yamada M, Kimura Y, Ishiyama D, et al. Effect of the COVID-19 epidemic on physical activity in community-dwelling older adults in Japan: A cross-sectional online survey. J Nutr Health Aging. 2020;24(9):948–950. EDN: HPTQJB doi: 10.1007/s12603-020-1424-2
  24. Bahat G. COVID-19 and the renin angiotensin system: Implications for the older adults. J Nutr Health Aging. 2020; 24(7):699–704. EDN: SIOIYR doi: 10.1007/s12603-020-1403-7
  25. Ohara DG, Pegorari MS, Dos Santos NL, et al. Respiratory muscle strength as a discriminator of sarcopenia in community-dwelling elderly: A cross-sectional study. J Nutr Health Aging. 2018; 22(8):952–958. EDN: HWRFVK doi: 10.1007/s12603-018-1079-4
  26. Белопасов В.В., Белопасова А.В., Веселова Д.К. Инволюционные формы патологии скелетной мускулатуры // Медицинский алфавит. 2022. № 32. С. 17–24. [Belopasov VV, Belopasova AV, Veselova DK. Involutionary forms of skeletal muscle pathology. Meditsinskii alfavit. 2022;(32):17–24]. EDN: WUXSUA doi: 10.33667/2078-5631-2022-32-17-24
  27. Barnes M, Heywood AE, Mahimbo A, et al. Acute myocardial infarction and influenza: A meta-analysis of case-control studies. Heart. 2015;101(21):1738–1747. doi: 10.1136/heartjnl-2015-307691
  28. Soares MN, Eggelbusch M, Naddaf E, et al. Skeletal muscle alterations in patients with acute COVID-19 and post-acute sequelae of COVID-19. J Cachexia Sarcopenia Muscle. 2022;13(1):11–22. EDN: TAXEUE doi: 10.1002/jcsm.12896
  29. Carfi A, Bernabei R, Landi F. Persistent symptoms in patients after acute COVID-19. JAMA. 2020;324(6):603–605. doi: 10.1001/jama.2020.12603
  30. Pleguezuelos E, del Carmen A, Llorensi G, et al. Severe loss of mechanical efficiency in COVID-19 patients. J Cachexia Sarcopenia Muscle. 2021;12(4):1056–1063. doi: 10.1002/jcsm.12739
  31. Gautam N, Madathil S, Tahani N, et al. Medium-term outcome of severe to critically ill patients with SARS-CoV-2 infection. Clin Infect Dis. 2022;74(2):301–308. doi: 10.1093/cid/ciab341
  32. Huang C, Huang L, Wang Y, et al. 6-Month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet. 2021;397(10270):220–232. doi: 10.1016/S0140-6736(20)32656-8
  33. Sudre CH, Murray B, Varsavsky T, et al. Attributes and predictors of long COVID. Nat Med. 2021;27(4):626–631. EDN: KSEJGQ doi: 10.1038/s41591-021-01292-y
  34. Nalbandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27(4):601–615. doi: 10.1038/s41591-021-01283-z
  35. De Andrade-Junior MC, de Salles IC, de Brito CM, et al. Skeletal muscle wasting and function impairment in intensive care patients with severe COVID-19. Front Physiol. 2021;(12):640973. doi: 10.3389/fphys.2021.640973
  36. Paneroni M, Simonelli C, Saleri M, et al. Muscle strength and physical performance in patients without previous disabilities recovering from COVID-19 pneumonia. Am J Phys Med Rehabil. 2021;100(2):105–109. EDN: RMAPLN doi: 10.1097/PHM.0000000000001641
  37. Kim JW, Yoon JS, Kim EJ, et al. Prognostic implication of baseline sarcopenia for length of hospital stay and survival in patients with coronavirus disease 2019. J Gerontol A Biol Sci Med Sci. 2021;76(8):e110–e116. doi: 10.1093/gerona/glab085
  38. Yang T, Li Z, Jiang L, et al. Risk factors for intensive care unit-acquired weakness: A systematic review and meta-analysis. Acta Neurol Scand. 2018;138(2):104–114. doi: 10.1111/ane.12964
  39. Mohammadi B, Schedel I, Graf K, et al. Role of endotoxin in the pathogenesis of critical illness polyneuropathy. J Neurol. 2008;255(2):265–272. doi: 10.1007/s00415-008-0722-0
  40. Lacomis D, Giuliani MJ, van Cott A, Kramer DJ. Acute myopathy of intensive care: Clinical, electromyographic, and pathological aspects. Ann Neurol. 1996;40(4):645–654. doi: 10.1002/ana.410400415
  41. Al-Lozi MT, Pestronk A, Yee WC, et al. Rapidly evolving myopathy with myosin-deficient muscle fibers. Ann Neurol. 1994;35(3):273–279. doi: 10.1002/ana.410350306
  42. Bierbrauer J, Koch S, Olbricht C, et al. Early type II fiber atrophy in intensive care unit patients with nonexcitable muscle membrane. Crit Care Med. 2012;40(2):647–650. doi: 10.1097/CCM.0b013e31823295e6
  43. Wollersheim T, Woehlecke J, Krebs M, et al. Dynamics of myosin degradation in intensive care unit-acquired weakness during severe critical illness. Intensive Care Med. 2014;40(4):528–538. doi: 10.1007/s00134-014-3224-9
  44. Aschman T, Schneider J, Greuel S, et al. Association between SARS-CoV-2 infection and immune-mediated myopathy in patients who have died. JAMA Neurol. 2021;78(8):948–960. doi: 10.1001/jamaneurol.2021.2004
  45. Stukalov A, Girault V, Grass V, et al. Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV. Nature. 2021;594(7862):246–252. EDN: AJPQPV doi: 10.1038/s41586-021-03493-4
  46. Shi Z, de Vries HJ, Vlaar AP, et al. Diaphragm pathology in critically ill patients with COVID-19 and postmortem findings from 3 medical centers. JAMA Intern Med. 2021;181(1):122–124. doi: 10.1001/jamainternmed.2020.6278
  47. Walsh CJ, Batt J, Herridge MS, et al. Transcriptomic analysis reveals abnormal muscle repair and remodeling in survivors of critical illness with sustained weakness. Sci Rep. 2016;(6):29334. doi: 10.1038/srep29334
  48. Yang T, Li Z, Jiang L, et al. Risk factors for intensive care unit-acquired weakness: A systematic review and meta-analysis. Acta Neurol Scand. 2018;138(2):104–114. doi: 10.1111/ane.12964
  49. Leung TW, Wong KS, Hui AC, et al. Myopathic changes associated with severe acute respiratory syndrome: A postmortem case series. Arch Neurol. 2005;62(7):1113–1117. doi: 10.1001/archneur.62.7.1113
  50. Ramírez-Vélez R, Legarra-Gorgoñon G, Oscoz-Ochandorena S, et al. Reduced muscle strength in patients with long-COVID-19 syndrome is mediated by limb muscle mass. J Appl Physiol (1985). 2023;134(1):50–58. EDN: HYPAJI doi: 10.1152/japplphysiol.00599.2022
  51. Rudroff T, Workman CD, Ponto LL. 18 F-FDG-PET imaging for post-COVID-19 brain and skeletal muscle alterations. Viruses. 2021;13(11):2283. doi: 10.3390/v13112283
  52. Han Q, Zheng B, Daines L, Sheikh A. Long-term sequelae of COVID-19: A systematic review and meta-analysis of one-year follow-up studies on post-COVID symptoms. Pathogens. 2022;11(2):269. EDN: BPFUTB doi: 10.3390/pathogens11020269
  53. Medrinal C, Prieur G, Bonnevie T, et al. Muscle weakness, functional capacities and recovery for COVID-19 ICU survivors. BMC Anesthesiol. 2021;21(1):64. EDN: GCASJI doi: 10.1186/s12871-021-01274-0
  54. Marusic U, Narici M, Simunic B, et al. Nonuniform loss of muscle strength and atrophy during bed rest: A systematic review. J Appl Physiol (1985). 2021;131(1):194–206. doi: 10.1152/japplphysiol.00363.2020
  55. Tanriverdi A, Savci S, Kahraman BO, Ozpelit E. Extrapulmonary features of post-COVID-19 patients: Muscle function, physical activity, mood, and sleep quality. Ir J Med Sci. 2022;191(3): 969–975. EDN: IBYBRG doi: 10.1007/s11845-021-02667-3
  56. Booth FW, Roberts CK, Laye MJ. Lack of exercise is a major cause of chronic diseases. Compr Physiol. 2012;2(2):1143–1211. EDN: NTJJCW doi: 10.1002/cphy.c110025
  57. Hyatt H, Deminice R, Yoshihara T, Powers SK. Mitochondrial dysfunction induces muscle atrophy during prolonged inactivity: A review of the causes and effects. Arch Biochem Biophys. 2019;(662):49–60. EDN: YJWJYF doi: 10.1016/j.abb.2018.11.005
  58. Bij de Vaate E, Gerrits KH, Goossens PH. Personalized recovery of severe COVID19: Rehabilitation from the perspective of patient needs. Eur J Clin Invest. 2020;50(7):e13325. doi: 10.1111/eci.13325
  59. Valente AF, Jaspers RT, Wüst RC. Regular physical exercise mediates the immune response in atherosclerosis. Exerc Immunol Rev. 2021;27:42–53.
  60. Atakan MM, Li Y, Kosar SN, et al. Evidence-based effects of high-intensity interval training on exercise capacity and health: A review with historical perspective. Int J Environ Res Public Health. 2021;18(13):7201. doi: 10.3390/ ijerph18137201
  61. Белопасов В.В., Журавлева Е.Н., Нугманова Н.П., Абдрашитова А.Т. Постковидные неврологические синдромы // Клиническая практика. 2021. Т. 12, № 2. C. 69–82. [Belopasov VV, Zhuravleva EN, Nugmanova NP, Abdrashitova AT. Post-Covid-19 neurological syndromes. J Clin Pract. 2021;12(2): 69–82]. EDN: MZQWAN doi: 10.17816/clinpract71137

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Multifactorial development of generalized muscle weakness in patients with post-COVID syndrome

Download (1MB)

Copyright (c) 2024 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies