Diagnosis of Epilepsy: from the Beginning to the New Hybrid PET/MR Technique

Cover Page

Cite item

Abstract

The problem of diagnosis and treatment of epilepsy concerns medical society for a several thousands of years. The understanding of the causes and pathological mechanisms of this condition underwent numerous and substantial changes during this time, that allowed reaching significant advances in both the diagnosis or treatment. At the present time, there is a wide spectrum of diagnostic methods that allow localizing the epileptogenic focus, that is essential for planning the surgical treatment in patients with pharmacoresistant epilepsy. The results of the surgical treatment are strongly dependent on the diagnostic accuracy in the detection of one or several epileptogenic foci and on the prognosis of their resection. In this connection, the research on the possibilities and perfection of new diagnostic methods hold the potential to improve the results of the surgical treatment and the life quality in patients with pharmacoresistant epilepsy. This review presents a detailed description of the evolution of epilepsy diagnostics from the first implementation of electroencephalography in the 1920-s to the modern hybrid methods such as SISCOM (Subtraction Ictal SPECT Co-Registered to MRI) and PET-MRI.

About the authors

Igor A. Znamenskiy

Federal Center of Brain Research and Neurotechnologies; The Russian National Research Medical University named after N.I. Pirogov; Scientific and Clinical Center No. 2 of the Petrovsky National Research Centre of Surgery

Email: znamenskiy@fccps.ru
ORCID iD: 0000-0003-0305-6723
SPIN-code: 9835-8594

MD, PhD, Dr. Sci. (Med.), Professor

Russian Federation, Moscow; Moscow; Moscow

Mikhail B. Dolgushin

Federal Center of Brain Research and Neurotechnologies

Email: dolgushin.m@fccps.ru
ORCID iD: 0000-0003-3930-5998
SPIN-code: 6388-9644

MD, PhD, Dr. Sci. (Med.), Professor of the Russian Academy of Sciences

Réunion, Moscow

Anastasiya A. Yurchenko

The Russian National Research Medical University named after N.I. Pirogov

Email: a_a_yurchenko@list.ru
Russian Federation, Moscow

Tatiana M. Rostovtseva

Federal Center of Brain Research and Neurotechnologies

Author for correspondence.
Email: rostovtsevat@mail.ru
ORCID iD: 0000-0001-6541-179X
SPIN-code: 5840-7590
Russian Federation, Moscow

Mariya A. Karalkina

Federal Center of Brain Research and Neurotechnologies

Email: karalkina.m@fccps.ru
ORCID iD: 0000-0002-9267-3602
SPIN-code: 9812-0420

MD, PhD

Russian Federation, Moscow

References

  1. Löscher W, Klein P. The Pharmacology and clinical efficacy of antiseizure medications: From bromide salts to cenobamate and beyond. CNS Drugs. 2021;35(15):935–963. doi: 10.1007/s40263-021-00827-8
  2. Новиков А.Е. Эпилептология: факты, личности, приоритеты. Иваново: ПресСто, 2018. 228 с. [Novikov AE. Epileptology: Facts, personalities, priorities. Ivanovo: PresSto; 2018. 228 p. (In Russ).]
  3. Руднев В.И., Карпов В.П. Гиппократ. Избранные книги. Москва, 1936. 736 с. [Rudnev VI, Karpov VP. Hippocrates. Selected books. Moscow; 1936. 736 р. (In Russ).]
  4. Hall M. Lectures on the nervous system and its diseases. Sherwood, Gilbert, and Piper; 1836. 171 p.
  5. Eadie MJ. Cortical epileptogenesis: Hughlings Jackson and his predecessors. Epilepsia. 2007;48(11):2010–2015. doi: 10.1111/j.1528-1167.2007.01163.x
  6. Brown-Séquard CE. Course of lectures on the physiology and pathology of the central nervous system: Delivered at the Royal College of Surgeons of England in May, 1858. Lippincott, 1860. 276 p.
  7. Kussmaul A, Tenner A. On the nature and origin of epileptiform convulsions. BoD-Books Demand, 1859. 380 p.
  8. Van der Kolk S. Professor Schroeder von der Kolk on the minute structure and functions of the spinal cord and medulla oblongata, and on the proximate cause and rational treatment of epilepsy. Br Foreign Med Chir Rev. 1860;25(49):73–81.
  9. Reynolds JR, Hartshorne H. A system of medicine. HC Lea, 1879. 82 p.
  10. Wilks S. Observations on the pathology of some of the diseases of the nervous system. Guy’s Hospital Reports. 1866;(12):157–244.
  11. Eadie M. The epileptology of John Thompson Dickson (1841–1874). Epilepsia. 2007;48(1):23–30. doi: 10.1111/j.1528-1167.2006.00908.x
  12. Scott J. Selected writings of John Hughlings Jackson. Am J Psychiatry. 1958;116(5):479a. doi: 10.1176/AJP.116.5.479-A
  13. Anwar H, Khan QU, Nadeem N, et al. Epileptic seizures. Discoveries. 2020;8(2):e110. doi: 10.15190/d.2020.7
  14. Makievskaya CI, Popkov VA, Andrianova NV, et al. Ketogenic diet and ketone bodies against ischemic injury: Targets, mechanisms, and therapeutic potential. Int J Mol Sci. 2023; 24(3):2576.
  15. Juhász C, Mittal S. Molecular imaging of brain tumor-associated epilepsy. Diagnostics. 2020;10(12):1049. doi: 10.3390/diagnostics10121049
  16. Hotka M, Kubista H. The paroxysmal depolarization shift in epilepsy research. Int J Biochemistry Cell Biology. 2019;(107): 77–81. doi: 10.1016/j.biocel.2018.12.006
  17. Карлов В.А. Учение об эпилептической системе. Заслуга отечественной научной школы // Эпилепсия и пароксизмальные состояния. 2017. Т. 9, № 4. С. 76–85. [Karlov VA. The concept of the «Epileptic system» is credited to Russian medical science. Epilepsy and paroxysmal conditions. 2017;9(4):76–85. (In Russ).] doi: 10.17749/2077-8333.2017.9.4.076-085
  18. Горбачёва Л.Р., Помыткин И.А., Сурин А.М., и др. Астроциты и их роль в патологии центральной нервной системы // Российский педиатрический журнал. 2018. Т. 21, № 1. С. 46–53. [Gorbacheva LR, Pomytkin IA, Surin AM, et al. Astrocytes and their role in the pathology of the central nervous system. Russ Pediatric J. 2018;21(1):46–53. (In Russ).] doi: 10.18821/1560-9561-2018-21-1-46-53
  19. Rossi D. Astrocyte physiopathology: At the crossroads of intercellular networking, inflammation and cell death. Progress Neurobiol. 2015;(130):86–120. doi: 10.1016/j.pneurobio.2015.04.003
  20. Sun J, Zheng Y, Chen Z, Wang Y. The role of Na+-K+-ATPase in the epileptic brain. CNS Neurosci Ther. 2022;28(9):1294–1302. doi: 10.1111/cns.13893
  21. Grisar T, Guillaume D, Delgado-Escuet AV. Contribution of Na+, K+-ATPase to focal epilepsy: A brief review. Epilepsy Res. 1992;12(2):141–149. doi: 10.1016/0920-1211(92)90034-q
  22. Камкин А.Г., Киселева И.С. Физиология и молекулярная биология мембран клеток. Москва: Академия, 2008. 592 с. [Kamkin AG, Kiseleva IS. Physiology and molecular biology of cell membranes. Moscow: Academy; 2008. 592 p. (In Russ).]
  23. Пожилова Е.В., Новиков В.Е., Левченкова О.С. Митохондриальный АТФ-зависимый калиевый канал и его фармакологические модуляторы // Обзоры по клинической фармакологии и лекарственной терапии. 2016. Т. 14, № 1. С. 29–36. [Senerzhova EV, Novikov VE, Levchenkova OS. Mitochondrial ATP-dependent potassium channel and its pharmacological modulators. Rev Clin Pharmacol Drug Therapy. 2016;14(1): 29–36. (In Russ).] doi: 10.17816/RCF14129-36
  24. Tenney JR, Rozhkov L, Horn P, et al. Cerebral glucose hypometabolism is associated with mitochondrial dysfunction in patients with intractable epilepsy and cortical dysplasia. Epilepsia. 2014;55(9):1415–1422. doi: 10.1111/epi.12731
  25. Witte O. Physiological basis of pathophysiological brain rhythms. Acta Neurobiol Exp. 2000;60(2):289–297.
  26. Харибегашвили А.С., Евтушенко С.К., Иванова М.Ф. О возможных новых нейрохимических механизмах патогенеза эпилепсии // Международный неврологический журнал. 2017. № 2. С. 11–15. [Kharibegashvili AS, Yevtushenko SK, Ivanova MF. Possible new neurochemical mechanisms of epilepsy pathogenesis. Int Neurol J. 2017;(2):11–15. (In Russ).] doi: 10.22141/2224-0713.2.88.2017.100192
  27. Kim JH, Marton J, Ametamey SM, Cumming P. A review of molecular imaging of glutamate receptors. Molecules. 2020;25(20):4749. doi: 10.3390/molecules25204749
  28. Ren E, Curia G. Synaptic reshaping and neuronal outcomes in the temporal lobe epilepsy. Int J Mol Sci. 2021;22(8):3860. doi: 10.3390/ijms22083860
  29. Chugani HT, Conti JR. Classification of infantile spasms in 139 cases: The role of positron emission tomography. Epilepsia. 1994;35(8):19.
  30. Leiderman DB, Albert P, Balish M. The dynamics of metabolic change following seizures as measured by positron emission tomography with fludeoxyglucose F-18. Arch Neurol. 1994; 51(9):932–936. doi: 10.1001/archneur.1994.00540210106019
  31. Чистякова О.В., Шпаков А.О. Современные достижения в изучении глюкозных транспортеров в центральной нервной системе // Цитология. 2019. Т. 61, № 3. С. 235–246. [Chistyakova OV, Shpakov AO. Modern achievements in the study of glucose transporters in the central nervous system. Cytology. 2019;61(3):235–246. (In Russ).] doi: 10.1134/S0041377119030027
  32. Oldan JD, Shin HW, Khandani AH, et al. Subsequent experience in hybrid PET-MRI for evaluation of refractory focal onset epilepsy. Seizure. 2018;(61):128–134. doi: 10.1016/j.seizure.2018.07.022
  33. Grouiller F. All-in-one interictal presurgical imaging in patients with epilepsy: Single-session EEG/PET/(f) MRI. Eur J Nuclear Med Mol Imaging. 2015;42(7):1133–1143. doi: 10.1007/s00259-015-3045-2
  34. Stanisic M, Coello C, Ivanović J, et al. Seizure outcomes in relation to the extent of resection of the perifocal fluorodeoxyglucose and flumazenil PET abnormalities in anteromedial temporal lobectomy. Acta Neurochirurg. 2015;157(11):1905–1916. doi: 10.1007/s00701-015-2578-2
  35. Horsley V. Brain-surgery. Brit Med J. 1886;2(1345):670–675.
  36. Sills GJ, Rogawski MA. Mechanisms of action of currently used antiseizure drugs. Neuropharmacol. 2020;(168):107966. doi: 10.1016/j.neuropharm.2020.107966
  37. Pittau F, Grouiller F, Spinelli L, et al. The role of functional neuroimaging in pre-surgical epilepsy evaluation. Front Neurol. 2014;(5):31. doi: 10.3389/fneur.2014.00031
  38. West S, Nevitt SJ, Cotton J, et al. Surgery for epilepsy. Cochrane Database Sys Rev. 2019;6(6):CD010541. doi: 10.1002/14651858.CD010541.pub3
  39. Löscher W, Potschka H, Sisodiya SM, Vezzani A. Drug resistance in epilepsy: Clinical impact, potential mechanisms, and new innovative treatment options. Pharmacol Rev. 2020;72(3): 606–638. doi: 10.1124/pr.120.019539
  40. Fattorusso A, Matricardi S, Mencaroni E, et al. The pharmacoresistant epilepsy: An overview on existant and new emerging therapies. Front Neurol. 2021;(12):674483. doi: 10.3389/fneur.2021.674483
  41. Stone JL, Hughes JR. Early history of electroencephalography and establishment of the American Clinical Neurophysiology Society. J Clin Neurophysiol. 2013;30(1):28–44. doi: 10.1097/WNP.0b013e31827edb2d
  42. Gloor P. Hans berger and the discovery of the electroencephalogram. Electroencephalography Clin Neurophysiol. 1969;(Suppl 28):1–36.
  43. Gibbs FA, Davis H. Changes in the human electroencephalogram associated with loss of consciousness. Am J Physiol. 1935;(113):49–50.
  44. Gibbs FA, Gibbs EL, Lennox WG. Epilepsy: A paroxysmal cerebral dysrhythmia. Epilepsy Behav. 2002;3(4):395–401. doi: 10.1016/s1525-5050(02)00050-1
  45. Пенфилд В., Эриксон Т. Эпилепсия и мозговая локализация: Патофизиология, лечение и профилактика эпилептических припадков. Москва: Медгиз, 1949. 450 с. [Penfield V, Erickson T. Epilepsy and brain localization: Pathophysiology, treatment and prevention of epileptic seizures. Moscow: Medgiz; 1949. 450 р. (In Russ).]
  46. Гриненко О.А., Головтеев А.Л., Коптелова А.М., и др. Хирургия эпилепсии при многоочаговом поражении головного мозга. Опыт лечения детей с туберозным склерозом // Вестник эпилептологии. 2014. № 1-2. С. 7–20. [Grinenko OA, Golovteev AL, Koptelova AM, et al. Surgery of epilepsy with multi-focal brain damage. Experience in the treatment of children with tuberous sclerosis. Bulletin Epileptol. 2014;(1-2): 7–20. (In Russ).]
  47. Chassoux F, Rodrigo S, Semah F, et al. FDG-PET improves surgical outcome in negative MRI Taylor-type focal cortical dysplasias. Neurology. 2010;75(24):2168–2175. doi: 10.1212/WNL.0b013e31820203a9
  48. Kudr M, Krsek P, Marusic P, et al. SISCOM and FDG-PET in patients with non-lesional extratemporal epilepsy: Correlation with intracranial EEG, histology, and seizure outcome. Epileptic Dis. 2013;15(1):3–13. doi: 10.1684/epd.2013.0560
  49. Shorvon SD. A history of neuroimaging in epilepsy 1909–2009. Epilepsia. 2009;50(Suppl 3):39–49. doi: 10.1111/j.1528-1167.2009.02038.x
  50. Bull JW, Fischgold H. A short history of neuroradiology. In E. Cabanis, ed. Contribution l’Histoire de la Neuroradiologie Europenne. Editions Pradel, Paris; 1989. 14 р.
  51. Lauterbur PC. Image formation by induced local interactions. Examples employing nuclear magnetic resonance. 1973. Clin Orthop Relat Res. 1989;(244):3–6.
  52. Cook MJ, Fish DR, Shorvon SD, et al. Hippocampal volumetric and morphometric studies in frontal and temporal lobe epilepsy. Brain. 1992;115(4):1001–1015. doi: 10.1093/brain/115.4.1001
  53. Riney K, Bogacz A, Somerville E, et al. ILAE classification and definition of epilepsy syndromes with onset at a variable age: Position statement by the ILAE Task Force on Nosology and Definitions. Epilepsia. 2022;63(6):1443–1474. doi: 10.1111/epi.17240
  54. Bien CG, Granata А, Antozzi C, et al. Pathogenesis, diagnosis and treatment of Rasmussen encephalitis: A European consensus statement. Brain. 2005;128(3):454–471. doi: 10.1093/brain/awh415
  55. Baumgartner C, Koren JP, Britto-Arias M, et al. Presurgical epilepsy evaluation and epilepsy surgery. F1000Res. 2019;(8):F1000 Faculty Rev-1818. doi: 10.12688/f1000research.17714.1
  56. Opheim G, van der Kolk A, Bloch KM, et al. 7T epilepsy task force consensus recommendations on the use of 7T MRI in clinical practice. Neurology. 2021;96(7):327–341. doi: 10.1212/WNL.0000000000011413
  57. Stevelink R, Sanders MW, Tuinman MP, et al. Epilepsy surgery for patients with genetic refractory epilepsy: A systematic review. Epileptic Dis. 2018;20(2):99–115. doi: 10.1684/epd.2018.0959
  58. Ogawa S, Lee TM, Nayak AS, Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magnetic Resonance Med. 1990;14(1):68–78. doi: 10.1002/mrm.1910140108
  59. Fernández S, Donaire A, Seres E, et al. PET/MRI and PET/MRI/SISCOM coregistration in the presurgical evaluation of refractory focal epilepsy. Epilepsy Res. 2015;(111):1–9. doi: 10.1016/j.eplepsyres.2014.12.011
  60. Wang J, Guo K, Cui B, et al. Individual [18F] FDG PET and functional MRI based on simultaneous PET/MRI may predict seizure recurrence after temporal lobe epilepsy surgery. Eur Radiol. 2022;32(6):3880–3888. doi: 10.1007/s00330-021-08490-9
  61. Poirier SE, Kwan BY, Jurkiewicz MT, et al. An evaluation of the diagnostic equivalence of 18F-FDG-PET between hybrid PET/MRI and PET/CT in drug-resistant epilepsy: A pilot study. Epilepsy Res. 2021;(172):106583. doi: 10.1016/j.eplepsyres.2021.106583
  62. Chen T, Guo L. The role of SISCOM in preoperative evaluation for patients with epilepsy surgery: A meta-analysis. Seizure. 2016;(41):43–50. doi: 10.1016/j.seizure.2016.06.024
  63. So EL. Role of neuroimaging in the management of seizure disorders. Mayo Clin Proc. 2002;77(11):1251–1264. doi: 10.4065/77.11.1251
  64. [Alabart NB, Parego XS. Imaging in epilepsy: Functional studies. (In Spanish).] Radiol. 2012;54(2):124–136. doi: 10.1016/j.rx.2011.05.018
  65. Rüber T, David B, Elger CE. MRI in epilepsy: Clinical standard and evolution. Curr Opinion Neurol. 2018;31(2):223–231. doi: 10.1097/WCO.0000000000000539
  66. Opheim G, van der Kolk A, Bloch KM, et al. 7T epilepsy task force consensus recommendations on the use of 7T MRI in clinical practice. Neurology. 2021;96(7):327–341. doi: 10.1212/WNL.0000000000011413
  67. Van Graan LA, Lemieux L, Chaudhary UJ. Methods and utility of EEG-fMRI in epilepsy. Quant Imaging Med Surg. 2015;5(2): 300–312. doi: 10.3978/j.issn.2223-4292.2015.02.04
  68. Ingmar B, Roberto S, Gerrit H, et al. Histopathological findings in brain tissue obtained during epilepsy surgery. N Engl J Med. 2017;377(17):1648–1656. doi: 10.1056/NEJMoa1703784
  69. Guo Z, Zhang C, Wang X, et al. Is intracranial electroencephalography mandatory for MRI-negative neocortical epilepsy surgery? J Neurosur. 2022;1–11. doi: 10.3171/2022.8.JNS22995
  70. Galazzo IB, Mattoli MV, Pizzini FB, et al. Cerebral metabolism and perfusion in MR-negative individuals with refractory focal epilepsy assessed by simultaneous acquisition of 18F-FDG PET and arterial spin labeling. Neuroimage Clin. 2016;(11):648–657. doi: 10.1016/j.nicl.2016.04.005
  71. Ilyas-Feldmann M, Vorderwülbecke B, Steinbrenner M. [Bildgebung in der prächirurgischen Epilepsiediagnostik. (In German).] Der Nervenarzt. 2022;93(6):592–598. doi: 10.1007/s00115-021-01180-3
  72. Theodore WH, Newmark ME, Sato S, et al. [18F]Fluorodeoxyglucose positron emission tomography in refractory complex partial seizures. Ann Neurol. 1983;14(4):429–437. doi: 10.1002/ana.410140406
  73. Oldan JD, Shin HW, Khandani AH, et al. Subsequent experience in hybrid PET-MRI for evaluation of refractory focal onset epilepsy. Seizure. 2018;(61):128–134. doi: 10.1016/j.seizure.2018.07.022
  74. Willmann O, Wennberg R, May T, et al. The contribution of 18F-FDG PET in preoperative epilepsy surgery evaluation for patients with temporal lobe epilepsy: A meta-analysis. Seizure. 2007;16(6):509–520. doi: 10.1016/j.seizure.2007.04.001
  75. Wong CH, Bleasel A, Wen L, et al. Relationship between preoperative hypometabolism and surgical outcome in neocortical epilepsy surgery. Epilepsia. 2012;53(8):1333–1340. doi: 10.1111/j.1528-1167.2012.03547.x
  76. Stanisic M, Coello C, Ivanović J, et al. Seizure outcomes in relation to the extent of resection of the perifocal fluorodeoxyglucose and flumazenil PET abnormalities in anteromedial temporal lobectomy. Acta Neurochirurg. 2015;157(11):1905–1916. doi: 10.1007/s00701-015-2578-2
  77. Rosenkrantz AB, Friedman K, Chandarana H, et al. Current status of hybrid PET/MRI in oncologic imaging. Am J Roentgenol. 2016;206(1):162. doi: 10.2214/AJR.15.14968
  78. Джужа Д.А. Гибридные системы ПЭТ/МРТ в онкологии: настоящее и будущее // Лучевая диагностика. Лучевая терапия. 2017. Т. 1. С. 51–59. [Juzha DA. Hybrid PET/MRI systems in oncology: Present and future. Radiat Diagnost. Radiat Therapy. 2017;(1):51–59. (In Russ).]
  79. Shin HW, Jewells V, Sheikh A, et al. Initial experience in hybrid PET-MRI for evaluation of refractory focal onset epilepsy. Seizure. 2015;(31):1–4. doi: 10.1016/j.seizure.2015.06.010
  80. Schramm G, Langner J, Hofheinz F, et al. Quantitative accuracy of attenuation correction in the Philips Ingenuity TF whole-body PET/MR system: A direct comparison with transmission-based attenuation correction. Nuklearmedizin. 2013;26(1):115–126. doi: 10.1007/s10334-012-0328-5
  81. Pichler BJ, Wehrl HF, Kolb A, Judenhofer MS. Positron emission tomography/magnetic resonance imaging: The next generation of multimodality imaging? Semin Nucl Med. 2008;38(3): 199–208. doi: 10.1053/j.semnuclmed.2008.02.001
  82. Zaidi H, Ojha N, Morich M, et al. Design and performance evaluation of a whole-body Ingenuity TF PET-MRI system. Phys Med Biol. 2011;56(10):3091. doi: 10.1088/0031-9155/56/10/013
  83. Juhász C, John F. Utility of MRI, PET, and ictal SPECT in presurgical evaluation of non-lesional pediatric epilepsy. Seizure. 2020;(77):15–28. doi: 10.1016/j.seizure.2019.05.008
  84. Rho JM, Shao LR, Stafstrom CE. 2-Deoxyglucose and beta-hydroxybutyrate: metabolic agents for seizure control. Front Cell Neurosci. 2019;(13):172. doi: 10.3389/fncel.2019.00172
  85. Miller-Thomas MM, Benzinger TL. Neurologic applications of PET/MR imaging. Magn Reson Imaging Clin N Am. 2017;25(2):297–313. doi: 10.1016/j.mric.2016.12.003
  86. Debets RM, Sadzot B, van Isselt JW, et al. Is 11C-flumazenil PET superior to 18FDG PET and 123I-iomazenil SPECT in presurgical evaluation of temporal lobe epilepsy? J Neurol Neurosurg Psychiatry. 1997;62(2):141–150. doi: 10.1136/jnnp.62.2.141
  87. Kaqawa K, Chugani DC, Asano E, et al. Epilepsy surgery outcome in children with tuberous sclerosis complex evaluated with alpha-[11C] methyl-L-trypotophan position emission tomograpgy (PET). Child Neurol. 2005;25(5):429–438. doi: 10.1177/08830738050200050701
  88. Kumar A, Chugani HT. The role of radionuclide imaging in epilepsy, part 2: Epilepsy syndromes. J Nucl Med Technol. 2017;45(1):22–29. doi: 10.2967/jnumed.113.129593
  89. Mishra AM, Bai H, Gribizis A, Blumenfeld H. Neuroimaging biomarkers of epileptogenesis. Neurosci Lett. 2011;497(3): 194–204. doi: 10.1016/j.neulet.2011.01.076

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 3. A fused SISCOM image (SPECT of the brain performed during a complex partial seizure combined with MRI of the brain) demonstrating hyperperfusion in the basal ganglia and insula of the left hemisphere (courtesy of FSBI «FCMN» FMBA of Russia).

Download (1MB)
3. Fig. 1. Ionic currents during the action potential. The cytoplasmic concentration of К+ ions significantly exceeds their extracellular concentration, in contrast to the concentration of Na+ and Ca+. During the propagation of the action potential, Na+ and Ca+ — channels and later К+ channels are opening, that provides a concentration gradient for ions to flow.

Download (1MB)
4. Fig. 2. Mechanism for the decrease of the К+ ions’ concentration in the extracellular matrix. The decrease of the К+ ions’ concentration in the extracellular matrix generally results from the effect of 3Na+/2K+ adenosine triphosphatase and inward rectifying potassium channels Kir. Functioning of adenosine triphosphatase requires the presence of adenosine triphosphate in the cytoplasm, whereas the increase of the adenosine triphosphate concentration leads to the decrease of the Kir channels’ activity.

Download (1MB)
5. Fig. 4. Combined positron emission tomography combined and fLAIR images obtained in the axial (а) and coronal (б) planes. Significant reduction of the 18F-FDG uptake is noted in the right hippocampus head and corpus (courtesy of FSBI «FCMN» FMBA of Russia).

Download (1MB)

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies