Morphological features of brain damage in severe COVID-19

Cover Page

Cite item

Full Text

Abstract

Background: The damage to the nervous system in COVID-19 reflects the systemic nature of the infection. The question of the neuroinvasive potential of SARS-CoV-2 remains open, the role of "pseudovirions" in the development of the endothelial dysfunction, as well as of the S1 subunit in the TLR activation, and the importance of the blood-brain barrier are discussed. The immunological, non-immunological, and cytopathic mechanisms of the virus's action are described; there is no clear understanding of the genesis of neuropathological changes caused by SARS-CoV-2. In this tragic pandemic, the lessons of the dead should help save lives and health.

Aim: to study and explain the features of brain damage in COVID-19.

Methods: Brain fragments from 20 patients who died due to severe COVID-19 were studied, the sections were stained with hematoxylin and eosin, according to van Gieson and Nissl, IHC reactions were performed with antibodies to the S-protein, CD68 and CD8, the changes were compared with those related to the lethal outcomes of pancreatic necrosis and ruptured aortic aneurysm.

Results: The following changes in the olfactory analyzer were revealed: sharp edema, dystrophic changes in neurons, gliosis, accumulations of starchy bodies, which explains the neuronal pathway of SARS-CoV-2 invasion; vascular plethora, erythrostasis and thrombosis, perivenular hemorrhages, diffuse edema, macroglia proliferation, perivascular astrocytosis and satellite. A positive reaction with the antibodies to the S1 and S2 subunits of the spike protein was detected, while the result of the reaction with antibodies to the N-protein of the virus, confirming the active replication of the virus, was doubtful. The S-protein expression in individual endotheliocytes makes the transendothelial route of the virus entry unlikely, in contrast to the hematogenous and neuronal pathways. The viral DNA was not detected by PCR. A weak inflammatory reaction was revealed in the form of perivascular accumulations of lymphocytes, scattered T-lymphocytes.

Conclusions: 2 groups of changes were identified, the first group included circulatory disorders with a tendency to thrombosis, edema, dystrophic-necrotic changes in neurons, glial proliferation, the second group included inflammatory-degenerative changes, a weak inflammatory reaction and amyloid-like bodies. Further morphometric and statistical studies are needed to obtain the reliable conclusions.

About the authors

Aleksander A. Kanibolotskiy

N.V. Sklifosovsky Research Institute for Emergency Medicine; Research Institute for Healthcare Organization and Medical Management

Author for correspondence.
Email: dr.kaa@mail.ru
SPIN-code: 3976-1662

врач-патологоанатом патологоанатомического отделения, заведующий  организационно-методическим отделом по патологической анатомии

Russian Federation, Moscow; Moscow

Oleg V. Zayratyants

Moscow State University of Medicine and Dentistry named after A.I. Evdokimov

Email: ovzair@mail.ru
ORCID iD: 0000-0003-3606-3823
SPIN-code: 4817-1084

MD, PhD, Professor

Russian Federation, Moscow

References

  1. Каниболоцкий А.А., Рачин А.П. Постковидный синдром: от морфологии до медицинской реабилитации // Постпандемия: новые векторы развития здравоохранения и здоровья: сборник докладов III Научно-методического форума организаторов здравоохранения, Москва, 07–09 декабря 2021 года. Москва: Научно-исследовательский институт организации здравоохранения и медицинского менеджмента Департамента здравоохранения города Москвы, 2021. С. 174–183. [Kanibolotsky AA, Rachin AP. Postcovid syndrome: from morphology to medical rehabilitation. In: Postpandemia: New vectors of healthcare and health development: Collection of reports of the III Scientific and Methodological Forum of Healthcare Organizers, Moscow, December 07-09, 2021. Moscow: Scientific Research Institute of Healthcare Organization and Medical Management of the Department of Healthcare of the City of Moscow; 2021. Р. 174–183. (In Russ).]
  2. Abboud H, Abboud FZ, Kharbouch H, et al. COVID-19 and SARS-Cov-2 infection: Pathophysiology and clinical effects on the nervous system. World Neurosurg. 2020;(140):49–53. doi: 10.1016/j.wneu.2020.05.193
  3. Koralnik IJ, Tyler KL. COVID-19: A global threat to the nervous system. Ann Neurol. 2020;88(1):1–11. doi: 10.1002/ana.25807
  4. Premraj L, Kannapadi NV, Briggs J, et al. Mid and long-term neurological and neuropsychiatric manifestations of post-COVID-19 syndrome: A meta-analysis. J Neurol Sci. 2022;(434): 120162. doi: 10.1016/j.jns.2022.120162
  5. Белопасов В.В., Журавлева Е.Н., Нугманова Н.П., Абдрашитова А.Т. Постковидные неврологические синдромы // Клиническая практика. 2021. Т. 12, № 2. C. 69–82. [Belopasov VV, Zhuravleva EN, Nugmanova NP, Abdrashitova TA. Postcovid neurological syndromes. Clin Practice. 2021;12(2):69–82. (In Russ).] doi: 10.17816/clinpract71137
  6. Петриков С.С., Годков М.А., Каниболоцкий А.А., и др. Результаты ПЦР-тестирования на наличие SARS-CoV материала из различных органов пациентов, умерших в постковидный период от причин, непосредственно не связанных с COVID-19 // Инфекционные болезни. 2022. Т. 20, № 1. C. 5–15. [Petrikov SS, Godkov MA, Kanibolotsky AA, et al. Results of PCR testing for the presence of SARS-CoV material from various organs of patients who died in the postcovid period from causes not directly related to COVID-19. Infectious Dis. 2022;20(1):5–15. (In Russ).] doi: 10.20953/1729-9225-2022-1-5-15
  7. Зайратьянц О.В., Cамсонова М.В., Михалева Л.М., и др. Патологическая анатомия COVID-19: Атлас / под общей ред. О.В. Зайратьянца. Москва, 2020. 140 с. [Zairatyants OV, Samsonova MV, Mikhaleva LM, et al. Pathological anatomy of COVID-19: Atlas. Ed. by O.V. Zairatyants. Moscow; 2020. 140 р. (In Russ).]
  8. Зайратьянц О.В., Каниболоцкий А.А., Михалева Л.М., и др. Новая коронавирусная инфекция (Сovid-19), организация работы московской патологоанатомической службы: методические рекомендации. Москва, 2022. 49 с. [Zairatiants OV, Kanibolotsky AA, Mikhaleva LM, et al. New coronavirus infection (Covid-19), organization of work of the Moscow pathology service: methodological recommendations. Moscow; 2022. 49 р. (In Russ).]
  9. Rauti R, Shahoha M, Leichtmann-Bardoogo Y, et al. Effect of SARS-CoV-2 proteins on vascular permeability. Elife. 2021; 10:e69314. doi: 10.7554/eLife.69314
  10. Frank MG, Nguyen KH, Ball JB, et al. SARS-CoV-2 spike S1 subunit induces neuroinflammatory, microglial and behavioral sickness responses: Evidence of PAMP-like properties. Brain Behav Immun. 2022;(100):267–277. doi: 10.1016/j.bbi.2021.12.007
  11. Erickson MA, Rhea EM, Knopp RC, Banks WA. Interactions of SARS-CoV-2 with the Blood-Brain Barrier. Int J Mol Sci. 2021;22(5):2681. doi: 10.3390/ijms22052681
  12. Huang X, Hussain B, Chang J. Peripheral inflammation and blood-brain barrier disruption: Effects and mechanisms. CNS Neurosci Ther. 2021;27(1):36–47. doi: 10.1111/cns.13569
  13. Jha NK, Ojha S, Jha SK, et al. Evidence of coronavirus (CoV) pathogenesis and emerging pathogen SARS-CoV-2 in the nervous system: A review on neurological impairments and manifestations. J Mol Neurosci. 2021;71(11):2192–2209. doi: 10.1007/s12031-020-01767-6
  14. Balcom EF, Nath A, Power C. Acute and chronic neurological disorders in COVID-19: Potential mechanisms of disease. Brain. 2021;144(12):3576–3588. doi: 10.1093/brain/awab302
  15. Kleinschmidt-De Masters BK, Pekmezci M, Rodriguez F, Tihan T. Diagnostic pathology: Neuropathology, 3rd ed. Elsevier; 2022. Р. 803–808.
  16. Евдокименко А.Н., Ануфриев П.Л., Каниболоцкий А.А., Келли Е.И. Инвазия и персистенция SARS-CoV-2 в центральной нервной системе: взгляд нейроморфолога // Бюллетень Национального общества по изучению болезни Паркинсона и расстройств движений. 2022. № 2. С. 49–55. [Evdokimenko AN, Anufriev PL, Kanibolotsky AA, Kelly EI. Invasion and persistence of SARS-CoV-2 in the central nervous system: A neuromorphologist's view. Bulletin National Soc Study Parkinson's Dis Movement Disorders. 2022;(2):49–55. (In Russ).]
  17. Рамазанов Г.Р., Шарифов Р.А., Ахматханова Л.Х., и др. Вирусассоциированная некротизирующая диссеминированная острая лейкоэнцефалопатия // Вестник Смоленской государственной медицинской академии. 2022. Т. 21, № 4. С. 35–43. [Ramazanov GR, Sharifov RA, Akhmatkhanova LH, et al. Virus-associated necrotizing disseminated acute leukoencephalopathy. Bulletin Smolensk State Med Academy. 2022; 21(4):35–43. (In Russ).]
  18. Белопасов В.В., Яшу Я., Самойлова Е.М., Баклаушев В.П. Поражение нервной системы при СOVID-19 // Клиническая практика. 2020. Т. 11, № 2. C. 60–80. [Belopasov VV, Yashu Y, Samoylova EM, Baklaushev VP. Lesion of the nervous system in COVID-19. J Clin Pract. 2020;11(2):60–80. (In Russ).] doi: 10.17816/clinpract34851
  19. Mukerji SS, Solomon IH. What can we learn from brain autopsies in COVID-19? Neurosci Lett. 2021;(742):135528. doi: 10.1016/j.neulet.2020.135528
  20. Vasquez-Bonilla WO, Orozco R, Argueta V, et al. A review of the main histopathological findings in Coronavirus Disease 2019. Hum Pathol. 2020;(105):74–83. doi: 10.1016/j.humpath.2020.07.023
  21. Fisicaro F, Di Napoli M, Liberto A, et al. Neurological sequelae in patients with COVID-19: A histopathological perspective. Int J Environ Res Public Health. 2021;18(4):1415. doi: 10.3390/ ijerph18041415
  22. Науменко В.Г., Грехов В.В. Методика исследования головного мозга при черепно-мозговой травме // Судебно-медицинская экспертиза. 1964. № 3. С. 51–57. [Naumenko VG, Grekhov VV. Methods of brain research in traumatic brain injury. Forensic Med Examination. 1964;(3):51–57. (In Russ).]
  23. Добровольский Г.Ф. Методологические основы топографической нейроморфологии и нейропатоморфологии головного мозга, черепа и шейного отдела позвоночника. Часть 1. Москва: Эдем, 2023. 148 с. [Dobrovolsky GF. Methodological foundations of topographic neuromorphology and neuropathomorphology of the brain, skull and cervical spine. Part 1. Moscow: Edem; 2023. 148 р. (In Russ).]
  24. Зайратьянц О.В., Полянко Н.И., Каниболоцкий А.А. Коморбидные заболевания (в том числе у умерших от коронавирусной инфекции // Труды научно-исследовательского института организации здравоохранения и медицинского менеджмента: сборник научных трудов. Москва, 2020. С. 137–141. [Zairatyants OV, Polyanko NI, Kanibolotsky AA. Comorbid diseases (including those who died from coronavirus infection. In: Proceedings of the Research Institute of Health Organization and Medical Management. Collection of scientific papers. Moscow; 2020. Р. 137–141. (In Russ).]
  25. Петриков С.С., Абучина В.М., Алиджанова Х.Г., и др. Диагностика и интенсивная терапия больных COVID-19: руководство для врачей. Москва: ГЭОТАР-Медиа, 2021. 432 с. [Petrikov SS, Abuchina VM, Alidzhanova HG, et al. Diagnosis and intensive care of COVID-19 patients: A guide for doctors. Moscow: GEOTAR-Media; 2021. 432 p. (In Russ).] doi: 10.33029/9704-6340-6-DIT-2021-1-432
  26. Sieracka J, Sieracki P, Kozera G, et al. COVID-19--neuropathological point of view, pathobiology, and dilemmas after the first year of the pandemic struggle. Folia Neuropathol. 2021;59(1):1–16. doi: 10.5114/fn.2021.105128
  27. Crunfli F, Carregari VC, Veras FP, et al. Morphological, cellular, and molecular basis of brain infection in COVID-19 patients. Proc Natl Acad Sci USA. 2022;119(35):e2200960119. doi: 10.1073/pnas.2200960119
  28. Cascarina SM, Ross ED. Phase separation by the SARS-CoV-2 nucleocapsid protein: Consensus and open questions. J Biol Chem. 2022;298(3):101677. doi: 10.1016/j.jbc.2022.101677
  29. Ramani A, Müller L, Ostermann PN, et al. SARS-CoV-2 targets neurons of 3D human brain organoids. EMBO J. 2020; 39(20):e106230. doi: 10.15252/embj.2020106230
  30. Escourolle and poirier’s manual of basic neuropathology, Six ed., edited by F. Gray, C. Duyckaerts, U. De Girolami. Oxford; 2019. 443 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Brain, hematoxylin and eosin stained section shows hyperemia, erythrocyte stasis in capillary vessels, scale bar 50 µm.

Download (1MB)
3. Fig. 2. Brain, edema with spongioform changes. Hematoxylin and eosin staining, scale bar 100 µm.

Download (1MB)
4. Fig. 3. Brain, ischemic damage like signs of necrosis and cytolysis of neurons. Hematoxylin and eosin staining, scale bar 50 µm.

Download (1MB)
5. Fig. 4. Brain, perineuronal satelliteosis (arrows). Hematoxylin and eosin staining, scale bar 50 µm.

Download (1MB)
6. Fig. 5. Brain, positive immunohistochemical reaction with antibodies to the S1 subunit of the SARS-CoV-2 spike protein in neurons and astrocytes. Scale bar 50 µm.

Download (1MB)
7. Fig. 6. Brain, positive immunohistochemical reaction with antibodies to CD68. Hematoxylin and eosin staining, scale bar 50 µm.

Download (1MB)
8. Fig. 7. Brain, positive immunohistochemical reaction with antibodies to CD8. Hematoxylin and eosin staining, scale bar 50 µm.

Download (1MB)
9. Fig. 8. Brain, numerous сorpora amylacea. Hematoxylin and eosin staining, scale bar 100 µm.

Download (1MB)

Copyright (c) 2023 Kanibolotskiy A.A., Zayratyants O.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies