Magnetic resonance imaging in the diagnosis of myocarditis in children

Cover Page

Cite item

Full Text

Abstract

Background: There is a need for the systematization, generalization and analysis of the structural changes of the myocardium, occurring in patients with myocarditis. This disease is rare; therefore, structured information in the field of radiological diagnostics is still insufficient within national publications.

Aim: The study purpose was to determine the significance and specificity of changes observed in cardiac magnetic resonance images in patients with myocarditis, and to compare the obtained results with the literature data.

Methods: 7 patients, including children aged 4 and 6, with a verified diagnosis of myocarditis were retrospectively examined.

Results: The analysis of the obtained images revealed the most common changes related to myocarditis, such as myocardial edema, impaired myocardial contractility, increased delayed accumulation of the contrast agent. The pathophysiological mechanisms of the found structural changes were analyzed and described.

Conclusion: Magnetic resonance imaging is the most important non-invasive method for diagnosing myocarditis, which allows one to identify the lesion of the heart muscle, to assess the extent of its damage, to differentiate myocarditis from other diseases, as well as to assess the dynamics when evaluating the effectiveness of therapy.

About the authors

Lyubov E. Fomina

National Medical Research Center for Children’s Health

Author for correspondence.
Email: love.fomina@mail.ru
ORCID iD: 0000-0002-3838-3284
SPIN-code: 1298-8350
Russian Federation, Moscow

Igor I. Yarmola

National Medical Research Center for Children’s Health

Email: lord_Dukich@bk.ru
ORCID iD: 0000-0002-1272-5119
SPIN-code: 5591-8066
Russian Federation, Moscow

Vladimir I. Barskiy

National Medical Research Center for Children’s Health

Email: woowka@mail.ru
ORCID iD: 0000-0003-1267-1517
Russian Federation, Moscow

Anatoly V. Anikin

National Medical Research Center for Children’s Health

Email: anikacor@gmail.com
SPIN-code: 7592-1352

MD, PhD

Russian Federation, Moscow

Elena V. Uglova

National Medical Research Center for Children’s Health

Email: uglova8@gmail.com
Russian Federation, Moscow

References

  1. Chow LH, Radio SJ, Sears TD, McManus BM. Insensitivity of right ventricular endomyocardial biopsy in the diagnosis of myocarditis. J Am Coll Cardiol. 1989;14(4):915–920. doi: 10.1016/0735-1097(89)90465-8
  2. Gutberlet M, Spors B, Thoma T, et al. Suspected chronic myocarditis at cardiac MR: Diagnostic accuracy and association with immunohistologically detected inflammation and viral persistence. Radiology. 2008;246(2):401–409. doi: 10.1148/radiol.2461062179
  3. Mangin M, Mahrholdt H, Sechtem U. [Diagnosis of myocarditis: Description and assessment of available methods. (In German)]. Dtsch Med Wochenschr. 2006;131(21):1228–1234. doi: 10.1055/s-2006-941758
  4. Mahrholdt H, Goedecke C, Wagner A, et al. Cardiovascular magnetic resonance assessment of human myocarditis: A comparison to histology and molecular pathology. Circulation. 2004; 109(10):1250–1258. doi: 10.1161/01.CIR.0000118493.13323.81
  5. Pan JA, Lee YJ, Salerno M. Diagnostic performance of extracellular volume, native T1, and T2 mapping versus lake louise criteria by cardiac magnetic resonance for detection of acute myocarditis: A meta-analysis. Circ Cardiovasc Imaging. 2018;11(7):e007598. doi: 10.1161/CIRCIMAGING.118.007598
  6. Ferreira VM, Schulz-Menger J, Holmvang G, et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: Expert recommendations. J Am Coll Cardiol. 2018;72(24): 3158–3176. doi: 10.1016/j.jacc.2018.09.072
  7. Luetkens JA, Faron A, Isaak A, et al. Comparison of original and 2018 lakе louise criteria for diagnosis of acute myocarditis: Results of a validation cohort. Radiol Cardiothorac Imaging. 2019;1(3):e190010. doi: 10.1148/ryct.2019190010
  8. Radunski UK, Lund GK, Stehning C, et al. CMR in patients with severe myocarditis: Diagnostic value of quantitative tissue markers including extracellular volume imaging. JACC Cardiovasc Imaging. 2014;7(7):667–675. doi: 10.1016/j.jcmg.2014.02.005
  9. Von Knobelsdorff-Brenkenhoff F, Schuler J, Doganguzel S, et al. Detection and monitoring of acute myocarditis applying quantitative cardiovascular magnetic resonance. Circ Cardiovasc Imaging. 2017;10(2):e005242. doi: 10.1161/circimaging.116.005242
  10. Luetkens JA, Homsi R, Sprinkart AM, et al. Incremental value of quantitative CMR including parametric mapping for the diagnosis of acute myocarditis. Eur Heart J Cardiovasc Imaging. 2016;17(2):154–161. doi: 10.1093/ehjci/jev246
  11. Friedrich MG, Sechtem U, Schulz-Menger J, et al. Cardiovascular magnetic resonance in myocarditis: A jacc white paper. J Am Coll Cardiol. 2009;53(17):1475–1487. doi: 10.1016/j.jacc.2009.02.007
  12. Eitel I, von Knobelsdorff-Brenkenhoff F, Bernhardt P, et al. Clinical characteristics and cardiovascular magnetic resonance findings in stress (takotsubo) cardiomyopathy. JAMA. 2011; 306(3):277–286. doi: 10.1001/jama.2011.992
  13. Dall’Armellina E, Piechnik SK, Ferreira VM, et al. Cardiovascular magnetic resonance by non contrast T1-mapping allows assessment of severity of injury in acute myocardial infarction. J Cardiovasc Magn Reson. 2012;14(1):15. doi: 10.1186/1532-429X-14-15
  14. Blauwet LA, Cooper LT. Myocarditis. Prog Cardiovasc Dis. 2010;52(4):274–288. doi: 10.1016/j.pcad.2009.11.006
  15. Bami K, Haddad T, Dick A, et al. Noninvasive imaging in acute myocarditis. Curr Opin Cardiol. 2016;31(2):217–223. doi: 10.1097/HCO.0000000000000265
  16. Angelini A, Calzolari V, Calabrese F, et al. Myocarditis mimicking acute myocardial infarction: Role of endomyocardial biopsy in the differential diagnosis. Heart. 2000;84(3):245–250. doi: 10.1136/heart.84.3.245
  17. Alexander PM, Daubeney PE, Nugent AW, et al.; National Australian Childhood Cardiomyopathy Study. Long-term outcomes of dilated cardiomyopathy diagnosed during childhood: Results from a national population-based study of childhood cardiomyopathy. Circulation. 2013;128(18):2039–2046. doi: 10.1161/circulationaha.113.002767
  18. Foerster SR, Canter CE, Cinar A, et al. Ventricular remodeling and survival are more favorable for myocarditis than for idiopathic dilated cardiomyopathy in childhood: An outcomes study from the Pediatric Cardiomyopathy Registry. Circ Heart Fail. 2010;3(6):689–697. doi: 10.1161/circheartfailure.109.902833
  19. Ammirati E, Cipriani M, Lilliu M, et al. Survival and left ventricular function changes in fulminant versus nonfulminant acute myocarditis. Circulation. 2017;136(6):529–545. doi: 10.1161/circukationaha.117.026386
  20. Miller DD, Holmvang G, Gill JB, et al. MRI detection of myocardial perfusion changes by gadolinium-DTPA infusion during dipyridamole hyperemia. Magn Reson Med. 1989;10(2): 246–255. doi: 10.1002/mrm.1910100209
  21. Paajanen H, Brasch RC, Schmiedl U, Ogan M. Magnetic resonance imaging of local soft tissue inflammation using gadolinium-DTPA. Acta Radiol. 1987;28(1):79–83.
  22. Friedrich MG, Strohm O, Schulz-Menger J, et al. Contrast media-enhanced magnetic resonance imaging visualizes myocardial changes in the course of viral myocarditis. Circulation. 1998; 97(18):1802–1809. doi: 10.1161/01.cir.97.18.1802
  23. Roditi GH, Hartnell GC, Cohen MC. MRI changes in myocarditis: Evaluation with spin echo, cine MR angiography and contrast enhanced spin echo imaging. Clin Radiol. 2000;55(10):752–758. doi: 10.1053/crad.2000.0519
  24. Abdel-Aty H, Boye P, Zagrosek A, et al. Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: Comparison of different approaches. J Am Coll Cardiol. 2005;45(11):1815–1822. doi: 10.1016/j.jacc.2004.11.069
  25. Gutberlet M, Spors B, Thoma T, et al. Suspected chronic myocarditis at cardiac MR: Diagnostic accuracy and association with immunohistologically detected inflammation and viral persistence. Radiology. 2008;246(2):401–409. doi: 10.1148/radiol.2461062179
  26. Mahrholdt H, Goedecke C, Wagner A, et al. Cardiovascular magnetic resonance assessment of human myocarditis: A comparison to histology and molecular pathology. Circulation. 2004;109(10):1250–1258. doi: 10.1161/01.CIR.0000118493.13323.81
  27. Lurz P, Luecke C, Eitel I, et al. Comprehensive cardiac magnetic resonance imaging in patients with suspected myocarditis: The myoracer-trial. J Am Coll Cardiol. 2016;67(15):1800–1811. doi: 10.1016/j.jacc.2016.02.013
  28. Radunski UK, Lund GK, Stehning C, et al. CMR in patients with severe myocarditis: Diagnostic value of quantitative tissue markers including extracellular volume imaging. JACC Cardiovasc Imaging. 2014;7(7):667–675. doi: 10.1016/j.jcmg.2014.02.005
  29. Rehwald WG, Fieno DS, Chen EL, et al. Myocardial magnetic resonance imagingcontrast agent concentrations after reversible and irreversible ischemic injury. Circulation. 2002;105(2): 224–229. doi: 10.1161/hc0202.102016
  30. Kim RJ, Fieno DS, Parrish TB, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation. 1999;100(19):1992–2002. doi: 10.1161/01.cir.100.19.1992
  31. Kim RJ, Wu E, Rafael A, et al. The Use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343(20):1445–1453. doi: 10.1056/NEJM200011163432003
  32. Abdel-Aty H, Boye P, Zagrosek A, et al. Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: Comparison of different approaches. J Am Coll Cardiol. 2005;45(11):1815–1822. doi: 10.1016/j.jacc.2004.11.069
  33. Laissy JP, Hyafil F, Feldman LJ, et al. Differentiating acute myocardial infarction from myocarditis: Diagnostic value of early- and delayed-perfusion cardiac MR imaging. Radiology. 2005;237(1):75–82. doi: 10.1148/radiol.2371041322
  34. Ferreira VM, Schulz-Menger J, Holmvang G, et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: Expert recommendations. J Am Coll Cardiol. 2018;72(24): 3158–3176. doi: 10.1016/j.jacc.2018.09.072
  35. Heymans S, Eriksson U, Lehtonen J, Cooper LT. The quest for new approaches in myocarditis and inflammatory cardiomyopathy. J Am Coll Cardiol. 2016;68(21):2348–2364. doi: 10.1016/j.jacc.2016.09.937
  36. Ong P, Athansiadis A, Hill S, et al. Usefulness of pericardial effusion as new diagnostic criterion for noninvasive detection of myocarditis. Am J Cardiol. 2011;108(3):445–452. doi: 10.1016/j.amjcard.2011.03.068

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Cardiac magnetic resonance imaging, STIR sequence, short axis plane: а — the arrow indicates the local area of myocardial edema of the interventricular septum; б — the arrow indicates а the diffuse zone of myocardial edema of the anterior and lateral walls of the left ventricle.

Download (1MB)
3. Fig. 2. Cardiac magnetic resonance imaging, Cine Fiesta sequence, short axis plane: а — diastole, the short arrow indicates the inferior wall of the left ventricle with a normal thickness, the long arrow points to the area of myocardial thinning; б — systole, the short arrows indicate thickening during the contraction of the normal myocardium of the left ventricle, the long arrow points to the site of akinesis in the damaged myocardium.

Download (1MB)
4. Fig. 3. Cardiac magnetic resonance imaging, myocardium delayed enhancement series (MDE): а — short axis plane; б — 4-chamber plane. The arrows indicate intramyocardial foci of the contrast enhancement, corresponding to inflammation.

Download (1MB)
5. Fig. 4. A schematic picture along the short axis of the heart. Various patterns of delayed contrast enhancement are presented: а — subepicardial; б — subendocardial; в — intramyocardial (intramural); г — transmural.

Download (1MB)
6. Fig. 5. Cardiac magnetic resonance imaging, delayed contrast enhancement series (MDE), short axis plane. The arrows indicate the areas of the contrast enhancement in the subepicardial foci of the myocardium and the adjacent part of the pericardium.

Download (1MB)

Copyright (c) 2023 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies