Vibroarthrography, arthrophonography — methods for non-invasive detection of the knee cartilage damage

Cover Page

Cite item

Full Text

Abstract

Phonoarthrography, vibration arthrography are non-invasive methods for assessing the condition of cartilage and the knee joint as a whole based on the sounds made by the joint movement. Acoustic sensors (accelerometers, microphones) are attached to the knee to measure the knee joint noise both in control groups (young adults and elderly subjects) and in patients with knee osteoarthropathies. Different authors propose different methods for attaching sensors, documenting and analyzing the joint sounds. The identified specific features allowed distinguishing between asymptomatic knee joints and those with osteoarthropathies. Acoustic signals were recorded and processed, and their frequency characteristics were determined and classified. The classification effectiveness correlated with the existing diagnostic tests and hence phonoarthrography and vibration arthrography can be qualified as a useful diagnostic aid.

About the authors

Alexandr A. Akhpashev

Federal Scientific and Clinical Center of Specialized Types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia; Peoples’ Friendship University of Russia

Email: a.akhpashev@gmail.com

канд. мед. наук, зав. кафедрой травматологии и ортопедии Академии постдипломного образования

Russian Federation, Мoscow

Gleb V. Fursenko

European Medical Center

Author for correspondence.
Email: dr.fursenko@gmail.com

травматолог-ортопед центра медицинской реабилитации

Russian Federation, Мoscow

Dmitry V. Skvortsov

Federal Scientific and Clinical Center of Specialized Types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia; Pirogov Russian National Research Medical University

Email: dvskvortsov@mail.ru

руководитель центра спортивной медицины и реабилитации ; д-р мед. наук, профессор кафедры реабилитации, спортивной медицины и физической культуры педиатрического факультета

Russian Federation, Moscow

Sergey N. Kaurkin

Federal Scientific and Clinical Center of Specialized Types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia

Email: dr.fursenko@gmail.com

научный сотрудник центра спортивной медицины и реабилитации

Russian Federation, Moscow

References

  1. Рахмилевич А.Б., Чанцев А.В., Распопова Е.А., Коломиец А.А. Диагностическая ценность трибологического исследования коленного сустава // Гений ортопедии. — 2012. — №2. — С. 102–105. [Rakhmilevich AB, Chantsev AV, Raspopova EA, Kolomiets AA. Diagnostic value of the knee tribologic study. Genij ortopedii. 2012;(2):102–105. (In Russ).]
  2. Рахмилевич А.Б., Чанцев А.В., Распопова Е.А. Возможности артрофонографии в диагностике и контроле лечения ранних стадий остеоартроза // Врач-аспирант. — 2010. — Т.43. — №6. — С. 45–49. [Rahmilevich AB, Chantsev AV, Raspopova EA. Possibilities artrophonography in diagnostics and control of treatment of early stages of the osteoarthrosis. Vrach-aspirant. 2010;43(6):45–49. (In Russ).]
  3. Рахмилевич А.Б., Чанцев А.В., Распопова Е.А, и др. Роль артрофонографии коленного сустава в дифференциальной диагностике ревматоидного артрита и деформирующего остеоартроза при ранних поражениях // Врач-аспирант. — 2010. — Т.43. — №6.4. — С. 549–553. [Rakhmilevich AB, Chantsev AV, Raspopova EA, et al. Knee joint artrophonography in differential diagnostics of rheumatoid arthritis and the deforming osteoarthrosis at early lesions. Vrach-aspirant. 2010;43(6.4):549–553. (In Russ).]
  4. Brooks S, Morgan M. Accuracy of clinical diagnosis in knee arthroscopy. Ann R Coll Surg Engl. 2002;84(4):265–268. doi: 10.1308/003588402320439711.
  5. Jackson RW, Abe I. The role of arthroscopy in the management of disorders of the knee. An analysis of 200 consecutive examinations. J Bone Joint Surg Br. 1972;54(2):310–322. doi: 10.1302/0301-620x.54b2.310.
  6. Menashe L, Hirko K, Losina E, et al. The diagnostic performance of MRI in osteoarthritis: a systematic review and meta-analysis. Osteoarthritis Cartilage. 2012;20(1):13–21. doi: 10.1016/j.joca.2011.10.003.
  7. Frank CB, Rangayyan RM, Bell GD. Analysis of knee joint sound signals for non-invasive diagnosis of cartilage pathology. IEEE Eng Med Biol Mag. 1990;9(1):65–68. doi: 10.1109/51.62910.
  8. Krishnan S, Rangayyan RM, Bell GD, Frank CB. Auditory display of knee-joint vibration signals. J Acoust Soc Am. 2001;110(6):3292–3304. doi: 10.1121/1.1413995.
  9. Peylan A. Direct auscultation of the joints; preliminary clinical observations. Rheumatism. 1953;9(4):77–81.
  10. Kernohan WG, Barr DA, McCoy GF, Mollan RA. Vibration arthrometry in assessment of knee disorders: the problem of angular velocity. J Biomed Eng. 1991;13(1):35–38. doi: 10.1016/0141-5425(91)90041-5.
  11. Rangayyan RM, Wu Y. Analysis of vibroarthrographic signals with features related to signal variability and radial-basis functions. Ann Biomed Eng. 2009;37(1):156–163. doi: 10.1007/s10439-008-9601-1.
  12. Krishnan S, Rangayyan RM, Bell GD, Frank CB. Adaptive time-frequency analysis of knee joint vibroarthrographic signals for noninvasive screening of articular cartilage pathology. EEE Trans Biomed Eng. 2000;47(6):773–783. doi: 10.1109/10.844228.
  13. McCoy GF, McCrea JD, Beverland DE, et al. Vibration arthrography as a diagnostic aid in diseases of the knee. A preliminary report. J Bone Joint Surg Br. 1987;69(2):288–293. doi: 10.1302/0301-620x.69b2.3818762.
  14. Rangayyan RM, Wu YF. Screening of knee-joint vibroarthrographic signals using statistical parameters and radial basis functions. Med Biol Eng Comput. 2008;46(3):223–232. doi: 10.1007/s11517-007-0278-7.
  15. Blodgett WE. Auscultation of the knee joint. The Boston Medical and Surgical Journal. 1902;146(3):63–66. doi: 10.1056/nejm190201161460304.
  16. Bircher E. Zur diagnose der meniscusluxation und des meniscusabrisses. Zentralbl Chir. 1913;(40):1852–1857.
  17. Walters CF. The value of joint auscultation. The Lancet. 1929;213(5514):920–921. doi: 10.1016/s0140-6736(00)79189-6.
  18. Erb KH. Über die möglichkeit der registrierung von gelenkgeräuschen. Langenbeck’s Archives of Surgery. 1933;241(11):237–245. doi: 10.1007/bf02797216.
  19. Fischer H, Johnson EW. Analysis of sounds from normal and pathologic knee joints. Arch Phys Med Rehabil. 1961;42:233–240.
  20. Kim KS, Seo JH, Kang JU, Song CG. An enhanced algorithm for knee joint sound classification using feature extraction based on time-frequency analysis. Comput Methods Programs Biomed. 2009;94(2):198–206. doi: 10.1016/j.cmpb.2008.12.012.
  21. Jiang CC, Liu YJ, Yip KM, Wu E. Physiological patellofemoral crepitus in knee joint disorders. Bull Hosp Jt Dis. 1993–1995;53(4):22–26.
  22. Rangayyan RM, Wu Y. Modeling and classification of knee-joint vibroarthrographic signals using probability density functions estimated with Parzen windows. Conf Proc IEEE Eng Med Biol Soc. 2008;2008:2099–2102. doi: 10.1109/IEMBS.2008.4649607.
  23. Rangayyan RM, Oloumi F, Wu Y, Cai S. Fractal analysis of knee-joint vibroarthrographic signals via power spectral analysis. Biomed Signal Processing Control. 2013;8(1):23–29. doi: 10.1016/j.bspc.2012.05.004.
  24. Prior J, Mascaro B, Shark LK, et al. Analysis of high frequency acoustic emission signals as a new approach for assessing knee osteoarthritis. Ann Rheum Dis. 2010;69(5):929–930. doi: 10.1136/ard.2009.112599.
  25. Wu Y, Chen P, Luo X, et al. Quantification of knee vibroarthrographic signal irregularity associated with patellofemoral joint cartilage pathology based on entropy and envelope amplitude measures. Comput Methods Programs Biomed. 2016;130:1–12. doi: 10.1016/j.cmpb.2016.03.021.
  26. Moussavi ZM, Rangayyan RM, Bell GD, et al. Screening of vibroarthrographic signals via adaptive segmentation and linear prediction modeling. IEEE Transactions on Biomedical Engineering. 1996;43(1):15–23. doi: 10.1109/10.477697.
  27. Tavathia S, Rangayyan RM, Frank CB, et al. Analysis of knee vibration signals using linear prediction. IEEE Trans Biomed Eng. 1992;39(9):959–970. doi: 10.1109/10.256430.
  28. Zhang YT, Rangayyan RM, Frank CB, Bell GD. Adaptive cancellation of muscle contraction interference in vibroarthrographic signals. IEEE Trans Biomed Eng. 1994;41(2):181–191. doi: 10.1109/10.284929.
  29. Ota S, Ando A, Tozawa Y, et al. Preliminary study of optimal measurement location on vibroarthrography for classification of patients with knee osteoarthritis. J Phys Ther Sci. 2016;28(10):2904–2908. doi: 10.1589/jpts.28.2904.
  30. Abbott SC, Cole MD. Vibration arthrometry: a critical review. Crit Rev Biomed Eng. 2013;41(3):223–242. doi: 10.1615/critrevbiomedeng.2014010061.

Copyright (c) 2019 Akhpashev A.A., Fursenko G.V., Skvortsov D.V., Kaurkin S.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies