A rational strategy for the maintenance of antiviral immunity to new SARS-CoV-2 strains

Cover Page

Cite item

Full Text

Abstract

New variants of SARS-CoV-2 such as Omicron BA.2, BA.4/5, BA.2.12.1 and BA 2.75 are characterized by higher infectivity and the ability to escape virus-neutralizing antibodies against previous coronavirus variants. The S-trimer of BA.2 and its phylogenetic derivatives are characterized by a predominant «Up»-conformation, which facilitates the interaction with ACE2 on target cells and promotes the resistance to neutralizing antibodies. The immunity acquired from the infection with earlier strains is non-sterile for both early and later strains; the booster systemic immunization does not significantly affect the effectiveness of antiviral immunity, and its feasibility is currently being questioned. Studies of the mucosal immune response have shown that intranasal immunization with adenovirus vaccines provides more pronounced protective immunity than systemic reimmunization does. A promising approach is the creation of multivalent inhaled next generation vaccines containing immunoadjuvants that activate B- and T-cell mucosal immunity. Currently, a large number of intranasal vaccines are undergoing phase I/II trials, while the preclinical and preliminary clinical results indicate that this method of vaccination provides a better mucosal immune response at the entry site of the virus than systemic immunization does. This strategy may provide a long-term immune protection against the currently existing and yet unknown new strains of SARS-CoV-2.

About the authors

Vladimir P. Baklaushev

Federal Scientific and Clinical Center for Specialized Medical Assistance and Medical Technologies of the Federal Medical Biological Agency; Pulmonology Scientific Research Institute under Federal Medical and Biological Agency of Russian Federation; Engelhardt Institute of Molecular Biology of the Russian Academy of Sciences

Email: baklaushev.vp@fnkc-fmba.ru
ORCID iD: 0000-0003-1039-4245
SPIN-code: 3968-2971
https://fnkc-fmba.ru/about/komanda-upravleniya/

MD, PhD

Russian Federation, 28, Orekhovy blvd, Moscow, 115682; Moscow; Moscow

Gaukhar M. Yusubalieva

Federal Scientific and Clinical Center for Specialized Medical Assistance and Medical Technologies of the Federal Medical Biological Agency; Pulmonology Scientific Research Institute under Federal Medical and Biological Agency of Russian Federation

Email: gaukhar@gaukhar.org
ORCID iD: 0000-0003-3056-4889
SPIN-code: 1559-5866

MD, PhD

Russian Federation, 28, Orekhovy blvd, Moscow, 115682; Moscow

Mikhail V. Bychinin

Federal Scientific and Clinical Center for Specialized Medical Assistance and Medical Technologies of the Federal Medical Biological Agency

Email: drbychinin@gmail.com
ORCID iD: 0000-0001-8461-4867
SPIN-code: 6524-9947

MD, PhD

Russian Federation, 28, Orekhovy blvd, Moscow, 115682

Saule M. Yusubalieva

Astana Medical University

Email: sm_yusubalieva@mail.ru
ORCID iD: 0000-0002-8258-8148
Kazakhstan, Astana

Vladimir A. Kalsin

Federal Scientific and Clinical Center for Specialized Medical Assistance and Medical Technologies of the Federal Medical Biological Agency; Pulmonology Scientific Research Institute under Federal Medical and Biological Agency of Russian Federation

Email: vkalsin@mail.ru
ORCID iD: 0000-0003-2705-3578
SPIN-code: 1046-8801
Russian Federation, 28, Orekhovy blvd, Moscow, 115682; Moscow

Aleksandr V. Troitskiy

Federal Scientific and Clinical Center for Specialized Medical Assistance and Medical Technologies of the Federal Medical Biological Agency

Author for correspondence.
Email: dr.troitskiy@gmail.com
ORCID iD: 0000-0003-2143-8696
SPIN-code: 2670-6662

MD, PhD

Russian Federation, 28, Orekhovy blvd, Moscow, 115682

References

  1. Xu Y, Wu C, Cao X, et al. Structural and biochemical mechanism for increased infectivity and immune evasion of Omicron BA.2 variant compared to BA.1 and their possible mouse origins. Cell Res. 2022;32(7):609–620. doi: 10.1038/s41422-022-00672-4
  2. Sun Y, Lin W, Dong W, Xu J. Origin and evolutionary analysis of the SARS-CoV-2 Omicron variant. J Biosaf Biosecur. 2022; 4(1):33–37. doi: 10.1016/j.jobb.2021.12.001
  3. Li Q, Zhang M, Liang Z, et al. Antigenicity comparison of SARS-CoV-2 Omicron sublineages with other variants contained multiple mutations in RBD. MedComm. 2022;3(2):e130. doi: 10.1002/mco2.130
  4. Cao Y, Song W, Wang L, et al. Characterizations of enhanced infectivity and antibody evasion of Omicron BA.2.75. bioRxiv. 2022. doi: 10.1101/2022.07.18.500332
  5. Sheward DJ, Kim C, Fischbach J, et al. Evasion of neutralizing antibodies by Omicron sublineage BA.2.75. bioRxiv. 2022. doi: 10.1101/2022.07.19.500716
  6. Saito A, Tamura T, Zahradnik J, et al. Virological characteristics of the SARS-CoV-2 Omicron BA.2.75. bioRxiv. 2022. doi: 10.1101/2022.08.07.503115
  7. Carvalho T, Krammer F, Iwasaki A. The first 12 months of COVID-19: a timeline of immunological insights. Nat Rev Immunol. 2021;21(4):245–256. doi: 10.1038/s41577-021-00522-1
  8. Liu SL, Iketani Y, Guo JF, et al. Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature. 2022; 602(7898):676–681. doi: 10.1038/s41586-021-04388-0
  9. Chu DK, Abrams EM, Golden DB, et al. Risk of second allergic reaction to SARS-CoV-2 vaccines: a systematic review and meta-analysis. JAMA Intern Med. 2022;182(4):376–385. doi: 10.1001/jamainternmed.2021.8515
  10. Gupta RK, Topol EJ. COVID-19 vaccine breakthrough infections. Science. 2021;374(6575):1561–1562. doi: 10.1126/science.abl8487
  11. Siddle KJ, Krasilnikova LA, Moreno GK, et al. Transmission from vaccinated individuals in a large SARS-CoV-2 Delta variant outbreak. Cell. 2022;185(3):485–492.e10. doi: 10.1016/j.cell.2021.12.027
  12. Mostaghimi D, Valdez CN, Larson HT, et al. Prevention of host-to-host transmission by SARS-CoV-2 vaccines. Lancet Infect Dis. 2022;22(2):e52–e58. doi: 10.1016/S1473-3099(21)00472-2
  13. Белопасов В.В., Яшу Я., Самойлова Е.М., Баклаушев В.П. Поражение нервной системы при СOVID-19 // Клиническая практика. 2020. Т. 11, № 2. C. 60–80. [Belopasov VV, Yashu Y, Samoylova EM, Baklaushev VP. Lesion of the nervous system in COVID-19. J Clin Pract. 2020;11(2):60–80. (In Russ).] doi: 10.17816/clinpract34851
  14. Белопасов В.В., Журавлева Е.Н., Нугманова Н.П., Абдрашитова А.Т. Постковидные неврологические синдромы // Клиническая практика. 2021. Т. 12, № 2. C. 69–82. [Belopasov VV, Zhuravleva EN, Nugmanova NP, Abdrashitova AT. Postcovid neurological syndromes. J Clin Pract. 2021;12(2):69–82. (In Russ).] doi: 10.17816/clinpract71137
  15. Mehandru S, Merad M. Pathological sequelae of long-haul COVID. Nat Immunol. 2022;23(2):194–202. doi: 10.1038/s41590-021-01104-y
  16. Meng B, Abdullahi A, Ferreira IA, et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature. 2022;603(7902):706–714. doi: 10.1038/s41586-022-04474-x
  17. Desai AD, Lavelle M, Boursiquot BC, Wan EY. Long-term complications of COVID-19. Am J Physiol Cell Physiol. 2022; 322(1):C1–C11. doi: 10.1152/ajpcell.00375.2021
  18. Rambaut A, Holmes EC, O’Toole Á, et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nat Microbiol. 2020;5(11):1403–1407. doi: 10.1038/s41564-020-0770-5
  19. Hadfield J, Megill C, Bell SM, et al. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics. 2018;34(23):4121–4123. doi: 10.1093/bioinformatics/bty407
  20. BV-BRC [Internet]. SARS-COV-2 variants and lineages of concern. Available from: https://www.bv-brc.org/view/VariantLineage/. Accessed: 15.06.2022.
  21. Harvey WT, Carabelli AM, Jackson B, et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol. 2021;19(7):409–424. doi: 10.1038/s41579-021-00573-0
  22. Mittal A, Khattri A, Verma V. Structural and antigenic variations in the spike protein of emerging SARS-CoV-2 variants. PLoS Pathog. 2022;18(2):e1010260. doi: 10.1371/journal.ppat.1010260
  23. Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol. 2022;23(1): 3–20. doi: 10.1038/s41580-021-00418-x
  24. Cerutti G, Guo Y, Zhou T, et al. Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite. Cell Host Microbe. 2021;29(5):819–833. e817. doi: 10.1016/j.chom.2021.03.005
  25. Nyberg T, Ferguson NM, Nash SG, et al. Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron (B.1.1.529) and delta (B.1.617.2) variants in England: a cohort study. Lancet. 2022;399(10332):1303–1312. doi: 10.1016/S0140-6736(22)00462-7
  26. Zappa M, Verdecchia P, Angeli F. Knowing the new Omicron BA.2.75 variant (‘Centaurus’): a simulation study. Eur J Intern Med. 2022:S0953-6205(22)00286-2. doi: 10.1016/j.ejim.2022.08.009
  27. Sfera A, Osorio C, Jafri N, et al. Intoxication with endogenous angiotensin II: a COVID-19 hypothesis. Front Immunol. 2020; 11:1472. doi: 10.3389/fimmu.2020.01472
  28. Cele А, Jackson L, Khoury DS, et al. Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization. Nature. 2021;602(7898):654–656. doi: 10.1038/s41586-021-04387-1
  29. Dejnirattisai W, Huo J, Zhou D, et al. SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. Cell. 2022;185(3):467–484.e415. doi: 10.1016/j.cell.2021.12.046
  30. Bruel T, Hadjadj J, Maes P, et al. Serum neutralization of SARS-CoV-2 Omicron sublineages BA.1 and BA.2 in patients receiving monoclonal antibodies. Nat Med. 2022;28(6):1297–1302. doi: 10.1038/s41591-022-01792-5
  31. Takashita E, Kinoshita N, Yamayoshi S, et al. Efficacy of antiviral agents against the SARS-CoV-2 Omicron Subvariant BA.2. N Engl J Med. 2022;386(15)1475–1477. doi: 10.1056/NEJMc2201933
  32. Arora P, Kempf A, Nehlmeier I, et al. Augmented neutralisation resistance of emerging omicron subvariants BA.2.12.1, BA.4, and BA.5. Lancet Infect Dis. 2022;22(8):1117–1118. doi: 10.1016/S1473-3099(22)00422-4
  33. Cao Y, Yisimayi A, Jian F, et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by omicron infection. Nature. 2022; 608(7923):593–602. doi: 10.1038/s41586-022-04980-y
  34. Tuekprakhon A, Nutalai R, Dijokaite-Guraliuc A, et al. Antibody escape of SARS-CoV-2 omicron BA.4 and BA.5 from vaccine and BA.1 serum. Cell. 2022;185(14):2422–2433.e13. doi: 10.1016/j.cell.2022.06.005
  35. Medits I, Springer DN, Graninger M, et al. Different neutralization profiles after primary SARS-CoV-2 Omicron BA.1 and BA.2 Infections. Front Immunol. 2022;13:946318. doi: 10.3389/fimmu.2022.946318
  36. Qu P, Faraone J, Evans JP, et al. Neutralization of the SARS-CoV-2 Omicron BA.4/5 and BA.2.12.1 subvariants. N Engl J Med. 2022;386(26):2526–2528. doi: 10.1056/NEJMc2206725
  37. Yamasoba D, Kimura I, Nasser H, et al. Virological characteristics of the SARS-CoV-2 omicron BA.2 spike. Cell. 2022;185(12): 2103–2115.e19. doi: 10.1016/j.cell.2022.04.035
  38. Hachmann NP, Miller J, Collier AY, et al. Neutralization escape by SARS-CoV-2 omicron subvariants BA.2.12.1, BA.4, and BA.5. N Engl J Med. 2022;387(1):86–88. doi: 10.1056/NEJMc2206576
  39. Lustig Y, Nemet I, Kliker L, et al. Neutralizing response against variants after SARS-CoV-2 infection and one dose of BNT162b2. N Engl J Med. 2021;384(25):2453–2454. doi: 10.1056/NEJMc2104036
  40. Turner JS, Kim W, Kalaidina E, et al. SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans. Nature. 2021;595(7867):421–425. doi: 10.1038/s41586-021-03647-4
  41. Nguyen DC, Lamothe PA, Woodruff MC, et al. COVID-19 and plasma cells: is there long-lived protection? Immunol Rev. 2022;309(1):40–63. doi: 10.1111/imr.13115
  42. Mettelman RC, Allen EK, Thomas PG. Mucosal immune responses to infection and vaccination in the respiratory tract. Immunity. 2022;55(5):749–780. doi: 10.1016/j.immuni.2022.04.013
  43. Alturaiki W. Considerations for novel COVID-19 mucosal vaccine development. Vaccines (Basel). 2022;10(8):1173. doi: 10.3390/vaccines10081173
  44. Dhama K, Dhawan M, Tiwari R, et al. COVID-19 intranasal vaccines: current progress, advantages, prospects, and challenges. Hum Vaccin Immunother. 2022;18(5):2045853. doi: 10.1080/21645515.2022.2045853
  45. Tiboni M, Casettari L, Illum L. Nasal vaccination against SARS-CoV-2: synergistic or alternative to intramuscular vaccines? Int J Pharm. 2021;603:120686. doi: 10.1016/j.ijpharm.2021.120686
  46. Kumar A, Kumar A. Mucosal and transdermal vaccine delivery strategies against COVID-19. Drug Deliv Transl Res. 2022; 12(5):968–972. doi: 10.1007/s13346-021-01001-9
  47. Van Doremalen N, Purushotham JN, Schulz JE, et al. Intranasal ChAdox1 nCov-19/AZD1222 vaccination reduces viral shedding after SARS-CoV-2 D614G challenge in preclinical models. Sci Transl Med. 2021;13(607):eabh0755. doi: 10.1126/scitranslmed.abh0755
  48. Hassan AO, Shrihari S, Gorman MJ, et al. An intranasal vaccine durably protects against SARS-CoV-2 variants in mice. Cell Rep. 2021;36(4):109452. doi: 10.1016/j.celrep.2021.109452
  49. Clinicaltrials.gov. A randomized, double-blind, placebo-controlled phase I/II clinical trial to evaluate the safety and immunogenicity of Ad5-nCov for inhalation in adults 18 years of age and older. CanSino Biologics Inc., 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT04840992. Accessed: 15.06.2022.
  50. Wu S, Huang J, Zhang Z, et al. Safety, tolerability, and immunogenicity of an aerosolised adenovirus type-5 vector-based COVID-19 vaccine (Ad5-nCov) in adults: preliminary report of an open-label and randomised phase 1 clinical trial. Lancet Infect Dis. 2021;21(12):1654–1664. doi: 10.1016/S1473-3099(21)00396-0
  51. King RG, Silva-Sanchez A, Peel JN, et al. Single-dose intranasal administration of AdCOVID elicits systemic and mucosal immunity against SARS-CoV-2 and fully protects mice from lethal challenge. Vaccines (Basel). 2021;9(8):881. doi: 10.3390/vaccines9080881
  52. Hassan AO, Kafai NM, Dmitriev IP, et al. A single-dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2. Cell. 2020;183(1):169–184.e13. doi: 10.1016/j.cell.2020.08.026
  53. Safety, tolerability and immunogenicity of Gam-COVID-Vac vaccine in a nasal spray (SPRAY). Available from: https://clinicaltrials.gov/ct2/show/results/NCT05248373. Accessed: 15.06.2022.
  54. Safety and Immunogenicity of COVI-VAC, a live attenuated vaccine against COVID-19. Available from: https://clinicaltrials.gov/ct2/show/NCT04619628. Accessed: 15.06.2022.
  55. A phase 1, randomized, double-blinded, placebo-controlled, dose-escalation and dose-expansion study to evaluate the safety and immunogenicity of DelNS1-NCoV-RBD LAIV for COVID-19 in Healthy Adults. The University of Hong Kong, Hong Kong; 2022. Available from: https://clinicaltrials.gov/ct2/show/NCT04809389. Accessed: 15.06.2022.
  56. Safety and immunogenicity of an intranasal RSV vaccine expressing SARS-CoV-2 spike protein (COVID-19 Vaccine) in adults. Available from: https://clinicaltrials.gov/ct2/show/NCT04798001. Accessed: 15.06.2022.
  57. Lam JH, Shivhare D, Chia TW, et al. Next-generation intranasal Covid-19 vaccine: a polymersome-based protein subunit formulation that provides robust protection against multiple variants of concern and early reduction in viral load of the upper airway in the golden Syrian hamster model. bioRxiv. 2022. doi: 10.1101/2022.02.12.480188
  58. Illinois Institute of Technology. Promising new COVID-19 treatment in development at Illinois Tech. Available from: www.iit.edu/news/promising-new-covid-19-treatment-development-illinois-tech. Accessed: 15.06.2022.
  59. Gaspar EB, Prudencio CR, De Gaspari E. Experimental studies using OMV in a new platform of SARS-CoV-2 vaccines. Hum Vaccines Immunother. 2021;17(9):2965–2968. doi: 10.1080/21645515.2021.1920272
  60. AuraVax Therapeutics licences intranasal vaccine adjuvant technology from Massachusetts General Hospital. Available from: www.oindpnews.com/2021/01/auravax-therapeutics-licences-intranasal-vaccine-adjuvant-technology-from-massachusetts-general-Hosp. Accessed: 15.06.2022.
  61. Kim E, Weisel FJ, Balmert SC, et al. A single subcutaneous or intranasal immunization with adenovirus-based SARS-CoV-2 vaccine induces robust humoral and cellular immune responses in mice. Eur J Immunol. 2021;51(7):1774–1784. doi: 10.1002/eji.202149167
  62. Seo SH, Jang Y. Cold-Adapted live attenuated sars-cov-2 vaccine completely protects human ace2 transgenic mice from sars-cov-2 infection. Vaccines. 2020;8(4):584. doi: 10.3390/vaccines8040584
  63. He J, Huang JR, Zhang YL, Zhang J. SARS-CoV-2 nucleocapsid protein intranasal inoculation induces local and systemic T cell responses in mice. J Med Virol. 2021;93(4):1923–1925. doi: 10.1002/jmv.26769
  64. Acharya R. Prospective vaccination of COVID-19 using shRNA-plasmid-LDH nanoconjugate. Med Hypotheses. 2020;143: 110084. doi: 10.1016/j.mehy.2020.110084
  65. Bakkari MA, Valiveti CK, Kaushik RS, Tummala H. Toll-like receptor-4 (TLR4) agonist-based intranasal nanovaccine delivery system for inducing systemic and mucosal immunity. Mol Pharm. 2021;18(6):2233–2241. doi: 10.1021/acs.molpharmaceut.0c01256
  66. Jearanaiwitayakul T, Seesen M, Chawengkirttikul R, et al. Intranasal administration of RBD nanoparticles confers induction of mucosal and systemic immunity against SARS-CoV-2. Vaccines. 2021;9(7):768. doi: 10.3390/vaccines9070768
  67. Afkhami S, D’Agostino MR, Zhang A, et al. Respiratory mucosal delivery of next-generation COVID-19 vaccine provides robust protection against both ancestral and variant strains of SARS-CoV-2. Cell. 2022;185(5):896–915.e19. doi: 10.1016/j.cell.2022.02.005
  68. Bliss CM, Parsons AJ, Nachbagauer R, et al. Targeting antigen to the surface of EVs improves the in vivo immunogenicity of human and non-human adenoviral vaccines in mice. Mol Ther Methods Clin Dev. 2020;16:108–125. doi: 10.1016/j.omtm.2019.12.003
  69. Tang J, Zeng C, Cox TM, et al. Respiratory mucosal immunity against SARS-CoV-2 following mRNA vaccination. Sci Immunol. 2022;eadd4853. doi: 10.1126/sciimmunol.add4853

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Evolution of new variants of SARS-CoV-2 superimposed on the “waves” of the pandemic: а — phylogeny of “variants of concern”; б — histogram of the incidence rates of different variants of SARS-CoV-2 in Europe (according to Gissad, https://gisaid.org/) against the background of the morbidity curve in Russia (according to www.yandex.ru). The figures at peaks indicate the daily increase in cases according to the official data.

Download (1MB)

Copyright (c) 2022 Baklaushev V.P., Yusubalieva G.M., Bychinin M.V., Yusubalieva S.M., Kalsin V.A., Troitskiy A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies