The main side effects of statins in clinical practice

Cover Page

Cite item

Full Text

Abstract

Statins have long occupied a central place in cardiovascular medicine, being an integral component of the prevention and treatment of atherosclerotic cardiovascular diseases (coronary heart disease and its main clinical forms, angina pectoris and myocardial infarction; transient ischemic attacks, ischemic strokes, etc.). By blocking a key enzyme of cholesterol biosynthesis, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA-reductase), statins normalize the parameters of the lipid spectrum, primarily, the serum levels of atherogenic low-density lipoprotein cholesterol. However, in addition to the beneficial effects of statins, side effects are also characteristic, which are a significant problem in modern clinical practice due to the fact that they can cause dangerous disorders, forcing physicians to reduce dosages or completely cancel these drugs. Understanding the side effects and the mechanisms underlying their formation is important for improving the measures for the early detection, prevention and treatment of those disorders. This article discusses such side effects of statins as myotoxicity, hepatotoxicity, nephrotoxicity. The pathogenetic mechanisms underlying these toxic effects of statins are discussed. A particular attention is paid to the effect of statins on the oxidative stress, the mechanisms of oxidative damage to cellular macromolecules (lipids, proteins and DNA) and their potential role in the development of myotoxicity, hepatotoxicity and nephrotoxicity.

About the authors

Aleksey M. Chaulin

Samara State Medical University; Samara Regional Cardiology Dispensary

Author for correspondence.
Email: alekseymichailovich22976@gmail.com
ORCID iD: 0000-0002-2712-0227
SPIN-code: 1107-0875

graduate student

Russian Federation, Samara; Samara

References

  1. Zhang Z, Li Z, Cao K, et al. Adjunctive therapy with statins reduces residual albuminuria/proteinuria and provides further renoprotection by downregulating the angiotensin II-AT1 pathway in hypertensive nephropathy. J Hypertens. 2017;35(7): 1442–1456. doi: 10.1097/HJH.0000000000001325
  2. Pirillo A, Catapano AL, Norata GD. Recent insights into low-density lipoprotein metabolism and therapy. Curr Opin Clin Nutr Metab Care. 2021;24(2):120–126. doi: 10.1097/MCO.0000000000000727
  3. Davignon J. Pleiotropic effects of pitavastatin. Br J Clin Pharmacol. 2012;73(4):518–535. doi: 10.1111/j.1365-2125.2011.04139.x
  4. Kubota T, Fujisaki K, Itoh Y, et al. Apoptotic injury in cultured human hepatocytes induced by HMG-CoA reductase inhibitors. Biochem Pharmacol. 2004;67(12):2175–2186. doi: 10.1016/j.bcp.2004.02.037
  5. Viola G, Grobelny P, Linardi MA, et al. Pitavastatin, a new HMG-CoA reductase inhibitor, induces phototoxicity in human keratinocytes NCTC-2544 through the formation of benzophenanthridine-like photoproducts. Arch Toxicol. 2012; 86(3):483–496. doi: 10.1007/s00204-011-0772-4
  6. Li J, Wang Y, Zhang W, et al. The role of a basolateral transporter in rosuvastatin transport and its interplay with apical breast cancer resistance protein in polarized cell monolayer systems. Drug Metab Dispos. 2012;40(11):2102–2108. doi: 10.1124/dmd.112.045666
  7. Tobert JA. Lovastatin and beyond: the history of the HMG-CoA reductase inhibitors. Nat Rev Drug Discov. 2003;2(7):517–526. doi: 10.1038/nrd1112
  8. Abrahamson EE, Ikonomovic MD, Dixon CE, DeKosky ST. Simvastatin therapy prevents brain trauma-induced increases in beta-amyloid peptide levels. Ann Neurol. 2009;66(3):407–414. doi: 10.1002/ana.21731
  9. Robin NC, Agoston Z, Biechele TL, et al. Simvastatin promotes adult hippocampal neurogenesis by enhancing Wnt/β-catenin signaling. Stem Cell Reports. 2013;2(1):9–17. doi: 10.1016/j.stemcr.2013.11.002
  10. Ostrowski SM, Johnson K, Siefert M, et al. Simvastatin inhibits protein isoprenylation in the brain. Neuroscience. 2016;329: 264–274. doi: 10.1016/j.neuroscience.2016.04.053
  11. Afzali M, Vatankhah M, Ostad SN. Investigation of simvastatin-induced apoptosis and cell cycle arrest in cancer stem cells of MCF-7. J Cancer Res Ther. 2016;12(2):725–730. doi: 10.4103/0973-1482.146127
  12. Atil B, Berger-Sieczkowski E, Bardy J, et al. In vitro and in vivo downregulation of the ATP binding cassette transporter B1 by the HMG-CoA reductase inhibitor simvastatin. Naunyn Schmiedebergs Arch Pharmacol. 2016;389(1):17–32. doi: 10.1007/s00210-015-1169-3
  13. Pal S, Ghosh M, Ghosh S, et al. Atorvastatin induced hepatic oxidative stress and apoptotic damage via MAPKs, mitochondria, calpain and caspase12 dependent pathways. Food Chem Toxicol. 2015;83:36–47. doi: 10.1016/j.fct.2015.05.016
  14. Sakaeda T, Kadoyama K, Okuno Y. Statin-associated muscular and renal adverse events: data mining of the public version of the FDA adverse event reporting system. PLoS One. 2011;6(12):e28124. doi: 10.1371/journal.pone.0028124
  15. Singh F, Charles AL, Schlagowski AI, et al. Reductive stress impairs myoblasts mitochondrial function and triggers mitochondrial hormesis. Biochim Biophys Acta. 2015;1853(7): 1574–1585. doi: 10.1016/j.bbamcr.2015.03.006
  16. Bouitbir J, Singh F, Charles AL, et al. Statins trigger mitochondrial reactive oxygen species-induced apoptosis in glycolytic skeletal muscle. Antioxid Redox Signal. 2016;24(2):84–98. doi: 10.1089/ars.2014.6190
  17. Bonifacio A, Sanvee GM, Bouitbir J, Krähenbühl S. The AKT/mTOR signaling pathway plays a key role in statin-induced myotoxicity. Biochim Biophys Acta. 2015;1853(8):1841–1849. doi: 10.1016/j.bbamcr.2015.04.010
  18. Goli AK, Goli SA, Byrd RP, Roy TM. Simvastatin-induced lactic acidosis: a rare adverse reaction? Clin Pharmacol Ther. 2002;72(4):461–464. doi: 10.1067/mcp.2002.127943
  19. Echaniz-Laguna A, Mohr M, Tranchant C. Neuromuscular symptoms and elevated creatine kinase after statin withdrawal. N Engl J Med. 2010;362(6):564–565. doi: 10.1056/NEJMc0908215
  20. Joy TR, Hegele RA. Narrative review: statin-related myopathy. Ann Intern Med. 2009;150(12):858–868. doi: 10.7326/0003-4819-150-12-200906160-00009
  21. Farag MM, Mohamed MB, Youssef EA. Assessment of hepatic function, oxidant/antioxidant status, and histopathological changes in rats treated with atorvastatin: Effect of dose and acute intoxication with acetaminophen. Hum Exp Toxicol. 2015; 34(8):828–837. doi: 10.1177/0960327114559991
  22. Motawi TK, Teleb ZA, El-Boghdady NA, Ibrahim SA. Effect of simvastatin and naringenin coadministration on rat liver DNA fragmentation and cytochrome P450 activity: an in vivo and in vitro study. J Physiol Biochem. 2014;70(1):225–237. doi: 10.1007/s13105-013-0296-x
  23. Pal S, Sarkar A, Pal PB, Sil PC. Protective effect of arjunolic acid against atorvastatin induced hepatic and renal pathophysiology via MAPK, mitochondria and ER dependent pathways. Biochimie. 2015;112:20–34. doi: 10.1016/j.biochi.2015.02.016
  24. Annigeri RA, Mani RM. Acute interstitial nephritis due to statin and its class effect. Indian J Nephrol. 2015;25(1):54–56. doi: 10.4103/0971-4065.136883
  25. Чаулин А.М., Дупляков Д.В. Роль PCSK9 в регуляции транспорта липопротеинов (обзор литературы) // Вопросы биологической, медицинской и фармацевтической химии. 2021. Т. 24, № 1. С. 42–45. [Chaulin AM, Duplyakov DV. The role of PCSK9 in the regulation of lipoprotein transport (literature review). Problems Biological, Med Pharmaceutical Chemistry. 2021;24(1):42–45. (In Russ).] doi: 10.29296/25877313-2021-01-00
  26. Чаулин А.М., Дупляков Д.В. PCSK-9: современные представления о биологической роли и возможности использования в качестве диагностического маркера сердечно-сосудистых заболеваний. Часть 1 // Кардиология: новости, мнения, обучение. 2019. Т. 7, № 2. С. 45–57. [Chaulin AM, Duplyakov DV. PCSK-9: modern views about biological role and possibilities of use as a diagnostic marker for cardiovascular diseases. Part 1. Cardiology News Opinions Training. 2019;7(2):45–57. (In Russ).] doi: 10.24411/2309-1908-2019-12005
  27. Чаулин АМ, Дупляков ДВ. О роле PCSK9 в развитии атеросклероза: молекулярные аспекты // Молекулярная медицина. 2021. Т. 19, № 2. С. 8–15. [Chaulin AM, Duplyakov DV. On the role of PCSK9 in the development of atherosclerosis: molecular aspects. Molecular Med. 2021;19(2):8–15. (In Russ).] doi: 10.29296/24999490-2021-02-02
  28. Tissier F, Farhat F, Philouze C, et al. Long-term atorvastatin treatment decreases heart maximal oxygen consumption and its vulnerability to in vitro oxidative stress in Watanabe heritable hyperlipidemic rabbit. Can J Physiol Pharmacol. 2018; 96(11):1112–1118. doi: 10.1139/cjpp-2018-0085
  29. Mason RP, Dawoud H, Jacob RF, et al. Eicosapentaenoic acid improves endothelial function and nitric oxide bioavailability in a manner that is enhanced in combination with a statin. Biomed Pharmacother. 2018;103:1231–1237. doi: 10.1016/j.biopha.2018.04.118
  30. Profumo E, Buttari B, Saso L, Rigano R. Pleiotropic effects of statins in atherosclerotic disease: focus on the antioxidant activity of atorvastatin. Curr Top Med Chem. 2014;14(22): 2542–2551. doi: 10.2174/1568026614666141203130324
  31. Фесенко Э.В., Прощаев К.И., Поляков В.И. Плейотропные эффекты статинотерапии и их роль в преодолении проблемы полиморбидности // Современные проблемы науки и образования. 2012. № 2. C. 48. [Fesenko EV, Proschaev KI, Polyakov VI. Pleiotropic effects of statin therapy and their role in overcoming the problem of polymorbidity. Modern Problems Sci Education. 2012;(2):48. (In Russ).]
  32. Antoniades C, Channon KM. Statins: pleiotropic regulators of cardiovascular redox state. Antioxid Redox Signal. 2014; 20(8):1195–1197. doi: 10.1089/ars.2014.5836
  33. Lim S, Barter P. Antioxidant effects of statins in the management of cardiometabolic disorders. J Atheroscler Thromb. 2014; 21(10):997–1010. doi: 10.5551/jat.24398
  34. Park J, Kwon OS, Cho SY, et al. Chronic administration of atorvastatin could partially ameliorate erectile function in streptozotocin-induced diabetic rats. PLoS One. 2017; 12(2):e0172751. doi: 10.1371/journal.pone.0172751
  35. Du Souich P, Roederer G, Dufour R. Myotoxicity of statins: Mechanism of action. Pharmacol Ther. 2017;175:1–16. doi: 10.1016/j.pharmthera.2017.02.029
  36. Hadzi-Petrushev N, Dimovska K, Jankulovski N, et al. Supplementation with alpha-tocopherol and ascorbic acid to nonalcoholic fatty liver disease’s statin therapy in men. Adv Pharmacol Sci. 2018;2018:4673061. doi: 10.1155/2018/4673061
  37. Jiao X, Ashtari N, Rahimi-Balaei M, et al. Mevalonate cascade and neurodevelopmental and neurodegenerative diseases: future targets for therapeutic application. Curr Mol Pharmacol. 2017;10(2):115–140. doi: 10.2174/1874467209666160112125446
  38. Wang X, Wu Q, Liu A, et al. Paracetamol: overdose-induced oxidative stress toxicity, metabolism, and protective effects of various compounds in vivo and in vitro. Drug Metab Rev. 2017;49(4):395–437. doi: 10.1080/03602532.2017.1354014
  39. Bouitbir J, Daussin F, Charles AL, et al. Mitochondria of trained skeletal muscle are protected from deleterious effects of statins. Muscle Nerve. 2012;46(3):367–373. doi: 10.1002/mus.23309
  40. Kunutsor SK, Seidu S, Khunti K. Statins and primary prevention of venous thromboembolism: a systematic review and meta-analysis. Lancet Haematol. 2017;4(2):e83–e93. doi: 10.1016/S2352-3026(16)30184-3
  41. Elnaem MH, Mohamed MH, Huri HZ, et al. Statin therapy prescribing for patients with type 2 diabetes mellitus: a review of current evidence and challenges. J Pharm Bioallied Sci. 2017;9(2):80–87. doi: 10.4103/jpbs.JPBS_30_17
  42. Gui YJ, Liao CX, Liu Q, et al. Efficacy and safety of statins and exercise combination therapy compared to statin monotherapy in patients with dyslipidaemia: a systematic review and meta-analysis. Eur J Prev Cardiol. 2017;24(9):907–916. doi: 10.1177/2047487317691874
  43. Macedo AF, Taylor FC, Casas JP, et al. Unintended effects of statins from observational studies in the general population: systematic review and meta-analysis. BMC Med. 2014;12:51. doi: 10.1186/1741-7015-12-51
  44. Björnsson E, Jacobsen EI, Kalaitzakis E. Hepatotoxicity associated with statins: reports of idiosyncratic liver injury post-marketing. J Hepatol. 2012;56(2):374–380. doi: 10.1016/j.jhep.2011.07.023
  45. Bays H. Statin safety: an overview and assessment of the data-2005. Am J Cardiol. 2006;97(8A):6C–26C. doi: 10.1016/j.amjcard.2005.12.006
  46. Baker SK, Tarnopolsky MA. Statin myopathies: pathophysiologic and clinical perspectives. Clin Invest Med. 2001;24(5):258–272.
  47. Zeman M, Zák A, Vecka M, Romaniv S. [Long-term hypolipidemic treatment of mixed hyperlipidemia with a combination of statins and fibrates. (In Czech)]. Cas Lek Cesk. 2003;142(8):500–504.
  48. Jacobson TA, Khan A, Maki KC, et al. Provider recommendations for patient-reported muscle symptoms on statin therapy: Insights from the Understanding Statin Use in America and Gaps in Patient Education survey. J Clin Lipidol. 2018;12(1): 78–88. doi: 10.1016/j.jacl.2017.09.006
  49. Mulchandani R, Lyngdoh T, Chakraborty P, Kakkar AK. Statin related adverse effects and patient education: a study from resource limited settings. Acta Cardiol. 2018;73(4):393–401. doi: 10.1080/00015385.2017.1406884
  50. Backes JM, Ruisinger JF, Gibson CA, Moriarty PM. Statin-associated muscle symptoms-Managing the highly intolerant. J Clin Lipidol. 2017;11(1):24–33. doi: 10.1016/j.jacl.2017.01.006
  51. Nissen SE, Stroes E, Dent-Acosta RE, et al.; GAUSS-3 Investigators. Efficacy and tolerability of evolocumab vs ezetimibe in patients with muscle-related statin intolerance: the GAUSS-3 randomized clinical trial. JAMA. 2016;315(15): 1580–1590. doi: 10.1001/jama.2016.3608
  52. Parker BA, Capizzi JA, Grimaldi AS, et al. Effect of statins on skeletal muscle function. Circulation. 2013;127(1):96–103. doi: 10.1161/CIRCULATIONAHA.112.136101
  53. Moriarty PM, Thompson PD, Cannon CP, et al.; Odyssey Alternative Investigators. Efficacy and safety of alirocumab vs ezetimibe in statin-intolerant patients, with a statin rechallenge arm: the odyssey alternative randomized trial. J Clin Lipidol. 2015;9(6):758–769. doi: 10.1016/j.jacl.2015.08.006
  54. Canzonieri E, de Candia C, Tarascio S, et al. A severe myopathy case in aged patient treated with high statin dosage. Toxicol Rep. 2017;4:438–440. doi: 10.1016/j.toxrep.2017.07.009
  55. Schulze J, Glass X. Statin hepatotoxicity and the dilemma of causality in rare hepatic adverse drug reactions. J Hepatol. 2012;57(3):702–703. doi: 10.1016/j.jhep.2012.03.010
  56. Буланова Е.Ю. Статины и печень // Атеросклероз и дислипидемии. 2013. № 3. С. 11–16. [Bulanova EY. Statins and liver. Atherosclerosis Dyslipidemia. 2013;(3):11–16. (In Russ).]
  57. Остроумова О.Д. Статины и печень: взгляд кардиолога // Consilium Medicum. 2017. Т. 19, № 10. С. 85–88. [Ostroumova OD. Statins and the liver: a cardiologist’s view. Consilium Medicum. 2017;19(10):85–88. (In Russ).] doi: 10.26442/2075-1753_19.10.85-88
  58. Deska P, Nowicki M. Short-term changes of serum potassium concentration induced by physical exercise in patient with arterial hypertension treated with angiotensin-converting enzyme inhibitor alone or in combination with statin. J Physiol Pharmacol. 2017;68(1):133–138.
  59. Shakir MK, Shin T, Hoang TD, Mai VQ. Successful treatment of a patient with statin-induced myopathy and myotonic dystrophy type II with proprotein convertase subtilisin/kexin type 9 inhibitor, alirocumab (Praluent). J Clin Lipidol. 2017;11(6): 1485–1487. doi: 10.1016/j.jacl.2017.08.014
  60. Bellosta S, Corsini A. Statin drug interactions and related adverse reactions. Expert Opin Drug Saf. 2012;11(6):933–946. doi: 10.1517/14740338.2012.712959
  61. Jiang J, Tang Q, Feng J, et al. Association between SLCO1B1 -521T>C and -388A>G polymorphisms and risk of statin-induced adverse drug reactions: A meta-analysis. Springerplus. 2016;5(1):1368. doi: 10.1186/s40064-016-2912-z
  62. Bouitbir J, Charles AL, Echaniz-Laguna A, et al. Opposite effects of statins on mitochondria of cardiac and skeletal muscles: a ‘mitohormesis’ mechanism involving reactive oxygen species and PGC-1. Eur Heart J. 2012;33(11):1397–407. doi: 10.1093/eurheartj/ehr224
  63. Bouitbir J, Charles AL, Rasseneur L, et al. Atorvastatin treatment reduces exercise capacities in rats: involvement of mitochondrial impairments and oxidative stress. J Appl Physiol (1985). 2011; 111(5):1477–1483. doi: 10.1152/japplphysiol.00107.2011
  64. Nadanaciva S, Dykens JA, Bernal A, et al. Mitochondrial impairment by PPAR agonists and statins identified via immunocaptured OXPHOS complex activities and respiration. Toxicol Appl Pharmacol. 2007;223(3):277–287. doi: 10.1016/j.taap.2007.06.003
  65. Montanaro S, Lhiaubet-Vallet V, Iesce MI, et al. A mechanistic study on the phototoxicity of atorvastatin: singlet oxygen generation by a phenanthrene-like photoproduct. Chem Res Toxicol. 2009;22(1):173–178. doi: 10.1021/tx800294z
  66. Abdoli N, Azarmi Y, Eghbal MA. Mitigation of statins-induced cytotoxicity and mitochondrial dysfunction by L-carnitine in freshly-isolated rat hepatocytes. Res Pharm Sci. 2015;10(2):143–151.
  67. Wat E, Ng CF, Wong EC, et al. The hepatoprotective effect of the combination use of Fructus Schisandrae with statin-- A preclinical evaluation. J Ethnopharmacol. 2016;178:104–114. doi: 10.1016/j.jep.2015.12.004
  68. Abdoli N, Heidari R, Azarmi Y, Eghbal MA. Mechanisms of the statins cytotoxicity in freshly isolated rat hepatocytes. J Biochem Mol Toxicol. 2013;27(6):287–294. doi: 10.1002/jbt.21485
  69. Kromer A, Moosmann B. Statin-induced liver injury involves cross-talk between cholesterol and selenoprotein biosynthetic pathways. Mol Pharmacol. 2009;75(6):1421–1429. doi: 10.1124/mol.108.053678
  70. Eghbal MA, Abdoli N, Azarmi Y. Efficiency of hepatocyte pretreatment with coenzyme Q10 against statin toxicity. Arh Hig Rada Toksikol. 2014;65(1):101–108. doi: 10.2478/10004-1254-65-2014-2398
  71. Abdoli N, Azarmi Y, Eghbal MA. Protective effects of n-acetylcysteine against the statins cytotoxicity in freshly isolated rat hepatocytes. Adv Pharm Bull. 2014;4(3):249–254. doi: 10.5681/apb.2014.036
  72. Sánchez CA, Rodríguez E, Varela E, et al. Statin-induced inhibition of MCF-7 breast cancer cell proliferation is related to cell cycle arrest and apoptotic and necrotic cell death mediated by an enhanced oxidative stress. Cancer Invest. 2008;26(7): 698–707. doi: 10.1080/07357900701874658
  73. Motawi TK, Teleb ZA, El-Boghdady NA, Ibrahim SA. Effect of simvastatin and naringenin coadministration on rat liver DNA fragmentation and cytochrome P450 activity: an in vivo and in vitro study. J Physiol Biochem. 2014;70(1):225–237. doi: 10.1007/s13105-013-0296-x
  74. Costa RA, Fernandes MP, de Souza-Pinto NC, Vercesi AE. Protective effects of l-carnitine and piracetam against mitochondrial permeability transition and PC3 cell necrosis induced by simvastatin. Eur J Pharmacol. 2013;701(1-3):82–86. doi: 10.1016/j.ejphar.2013.01.001
  75. Ihsan A, Wang X, Liu Z, et al. Long-term mequindox treatment induced endocrine and reproductive toxicity via oxidative stress in male Wistar rats. Toxicol Appl Pharmacol. 2011;252(3): 281–288. doi: 10.1016/j.taap.2011.02.020
  76. Shaukat Z, Liu D, Hussain R, et al. The role of JNK signalling in responses to oxidative DNA damage. Curr Drug Targets. 2016;17(2):154–63. doi: 10.2174/1389450116666150126111055
  77. Tavintharan S, Ong CN, Jeyaseelan K, et al. Reduced mitochondrial coenzyme Q10 levels in HepG2 cells treated with high-dose simvastatin: a possible role in statin-induced hepatotoxicity? Toxicol Appl Pharmacol. 2007;223(2):173–179. doi: 10.1016/j.taap.2007.05.013
  78. Bolton JL, Dunlap T. Formation and biological targets of quinones: cytotoxic versus cytoprotective effects. Chem Res Toxicol. 2017;30(1):13–37. doi: 10.1021/acs.chemrestox.6b00256
  79. Wang X, Martínez MA, Dai M, et al. Permethrin-induced oxidative stress and toxicity and metabolism. A review. Environ Res. 2016;149:86–104. doi: 10.1016/j.envres.2016.05.003
  80. Wang X, Martínez MA, Wu Q, et al. Fipronil insecticide toxicology: oxidative stress and metabolism. Crit Rev Toxicol. 2016; 46(10):876–899. doi: 10.1080/10408444.2016.1223014

Copyright (c) 2022 Chaulin A.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies