Successful application of conditioned culture medium for the treatment of a chronic wound of an amputation stump: a clinical case

Cover Page

Cite item

Full Text

Abstract

Background: Amputation of the lower extremities is a necessary procedure to save a patient with critical arterial and neurotrophic disorders in the lower extremities. The amputation stump-related complications develop in many patients with diabetes mellitus (up to 40% of the total population).

Clinical case description: Patient Yu., 64 years old, was admitted on October 19, 21 for an outpatient treatment of purulent-necrotic wounds of the amputation stump of the right lower limb. А high amputation was performed on September 24, 2021 due to thrombosis of the femoral-tibial bypass, installed on September 08, 2021 (bypassing below the knee joint gap with a Vascutek 7 mm synthetic prosthesis on the right) and the development of critical ischemia of the right lower limb with necrosis of the distal phalanges of the right foot toes. The wound was assessed according to the Bates-Jensen scale (BJ) and examined according to the developed protocol. The wound treatment was carried out according to an individual plan using a conditioned culture medium from mesenchymal stem cells (CM-MSCs), which stimulates angiogenesis and improves remodeling and recovery in the wound area. CM-MSC application made it possible to reduce the healing time and achieve a scarless closure of the tissue defect.

Conclusion: The use of CM-MSC can be an effective method for healing a purulent-necrotic postoperative wound resulting from amputation of a limb in patients with critical ischemia of the lower extremities.

About the authors

Andrey I. Cherepanin

Federal Scientific and Clinical Center for Specialized Medical Assistance and Medical Technologies of the Federal Medical Biological Agency

Author for correspondence.
Email: surgdoccher@yandex.ru
ORCID iD: 0000-0002-6254-8966
SPIN-code: 8652-7153

MD, PhD, Professor

Russian Federation, 28, Orekhovy blvd, Moscow, 115682

Olga V. Pavlova

Federal Scientific and Clinical Center for Specialized Medical Assistance and Medical Technologies of the Federal Medical Biological Agency

Email: vasa-vasorum@mail.ru
ORCID iD: 0000-0002-9459-7391
Russian Federation, 28, Orekhovy blvd, Moscow, 115682

Vladimir A. Kalsin

Federal Scientific and Clinical Center for Specialized Medical Assistance and Medical Technologies of the Federal Medical Biological Agency

Email: vkalsin@mail.ru
ORCID iD: 0000-0003-2705-3578
SPIN-code: 1046-8801

научный сотрудник лаборатории клеточных технологий

Russian Federation, 28, Orekhovy blvd, Moscow, 115682

Mikhail A. Konoplyannikov

Federal Scientific and Clinical Center for Specialized Medical Assistance and Medical Technologies of the Federal Medical Biological Agency

Email: mkonopl@mail.ru
ORCID iD: 0000-0003-1180-2343
SPIN-code: 9211-6391

PhD, Cand. Sci. (Biol.)

Russian Federation, 28, Orekhovy blvd, Moscow, 115682

Olga N. Kucherova

City Clinical Hospital named after V.V. Vinogradov

Email: ola-kucherova@mail.ru
ORCID iD: 0000-0003-3773-9629

MD, Ph.D.

Russian Federation, Moscow

Victor L. Baldin

Federal Scientific and Clinical Center for Specialized Medical Assistance and Medical Technologies of the Federal Medical Biological Agency

Email: baldinvl@gmail.com

MD, PhD

Russian Federation, 28, Orekhovy blvd, Moscow, 115682

Sergey V. Deryabin

Federal Scientific and Clinical Center for Specialized Medical Assistance and Medical Technologies of the Federal Medical Biological Agency

Email: deryabin@mail.ru
SPIN-code: 4929-0910

врач-сердечно-сосудистый хирург отделения сосудистой хирургии

Russian Federation, 28, Orekhovy blvd, Moscow, 115682

References

  1. Бенсман В.М. Хирургия гнойно-некротических осложнений диабетической стопы: руководство для врачей. Москва: Медпрактика-М, 2010. 495 с. [Bensman VM. Surgery of purulent-necrotic complications of diabetic foot: a guide for doctors. Moscow: Medpraktika-M; 2010. 495 p. (In Russ).]
  2. Царев О.А., Прокин Ф.Г., Захаров Н.Н., и др. Ампутация конечности у больных с атеросклеротической гангреной // Саратовский научно-медицинский журнал. 2011. Т. 7, № 4. С. 947–953. [Tsarev OA, Prokin FG, Zakharov NN, et al. Limb amputation in patients with atherosclerotic gangrene. Saratov Scientific Medical Journal. 2011;7(4):947–953. (In Russ).]
  3. Ozdemir S. Untersuchung zur Effektivität von offenen und geschlossenen Minoramputationen bei diabetischer Gangrän [Open or closed minor amputation for diabetic gangrene?]. Vasa. 2009; 38(Suppl 74):54–61. doi: 10.1024/0301-1526.38.S74.54
  4. Coulston JE, Tuff V, Twine CP, et al. Surgical factors in the prevention of infection following major lower limb amputation. Eur J Vasc Endovasc Surg. 2012;43(5):556–560. doi: 10.1016/j.ejvs.2012.01.029
  5. Патент RU 2292212 C1. Коноплянников А.Г., Колесникова А.И., Саенко А.С., и др. Кондиционная среда, обладающая лечебным эффектом. 2007. [Patent RU 2292212 C1. Konoplyannikov AG, Kolesnikova AI, Saenko AS, et al. An air-conditioned environment with a therapeutic effect. 2007. (In Russ).]
  6. Suh W, Kim KL, Kim JM, et al. Transplantation of endothelial progenitor cells accelerates dermal wound healing with increased recruitment of monocytes/macrophages and neovascularization. Stem Cells. 2005;23:1571–1578.
  7. Sasaki M, Abe R, Fujita Y, et al. Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J Immunol. 2008; 180:2581–2587.
  8. Wu Y, Chen L, Scott PG, Tredget EE. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells. 2007;25:2648–2659.
  9. Ratajczak MZ, Kucia M, Jadczyk T, et al. Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies? Leukemia. 2012;26:1166–1173. doi: 10.1038/leu.2011.389
  10. Pawitan JA. Prospect of stem cell conditioned medium in regenerative medicine. Biomed Res Int. 2014;2014:965849. doi: 10.1155/2014/965849
  11. Harris C, Bates-Jensen B, Parslow N, et al. Bates-Jensen wound assessment tool: pictorial guide validation project. J Wound Ostomy Continence Nurs. 2010;37(3):253–259. doi: 10.1097/WON.0b013e3181d73aab
  12. Bates-Jensen BM, McCreath HE, Harputlu D, Patlan A. Reliability of the Bates-Jensen wound assessment tool for pressure injury assessment: the pressure ulcer detection study. Wound Repair Regen. 2019;27(4):386–395. doi: 10.1111/wrr.12714
  13. Bogatcheva NV, Coleman ME. Conditioned medium of mesenchymal stromal cells: a new class of therapeutics. Biochemistry (Mosc). 2019;84(11):1375–1389. doi: 10.1134/S0006297919110129
  14. Pittenger MF, Discher DE, Péault BM, et al. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med. 2019;4:22. doi: 10.1038/s41536-019-0083-6
  15. Saheli M, Bayat M, Ganji R, et al. Human mesenchymal stem cells-conditioned medium improves diabetic wound healing mainly through modulating fibroblast behaviors. Arch Dermatol Res. 2020;312(5):325–336. doi: 10.1007/s00403-019-02016-6
  16. Li M, Luan F, Zhao Y, et al. Mesenchymal stem cell-conditioned medium accelerates wound healing with fewer scars. Int Wound J. 2017;14(1):64–73. doi: 10.1111/iwj.12551
  17. Zhang Y, Pan Y, Liu Y, et al. Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulate regenerative wound healing via transforming growth factor-β receptor inhibition. Stem Cell Res Ther. 2021;12(1):434. doi: 10.1186/s13287-021-02517-0
  18. Hu J, Chen Y, Huang Y, Su Y. Human umbilical cord mesenchymal stem cell-derived exosomes suppress dermal fibroblasts-myofibroblats transition via inhibiting the TGF-β1/Smad 2/3 signaling pathway. Exp Mol Pathol. 2020;115:104468. doi: 10.1016/j.yexmp.2020.104468
  19. De Gregorio C, Contador D, Díaz D, et al. Human adipose-derived mesenchymal stem cell-conditioned medium ameliorates polyneuropathy and foot ulceration in diabetic BKS db/db mice. Stem Cell Res Ther. 2020;11(1):168. doi: 10.1186/s13287-020-01680-0
  20. Sun J, Zhang Y, Song X, et al. The healing effects of conditioned medium derived from mesenchymal stem cells on radiation-induced skin wounds in rats. Cell Transplant. 2019; 28(1):105–115. doi: 10.1177/0963689718807410

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Patient Yu., 64 years old, diagnosis: “Atherosclerosis of the arteries of the lower extremities, occlusion of the femoral-popliteal segment on the right”: the wound condition at the beginning of the treatment (BJ scale).

Download (863KB)
3. Fig. 2. The same patient: a wound in the area of the right lower limb stump (amputation at the level of the middle third of the thigh), the initial wound appearance.

Download (1MB)
4. Fig. 3. The same patient: a view of the wound in 1.5 months.

Download (1MB)
5. Fig. 4. The same patient: a complete wound closure in 3.5 months, the final result.

Download (1MB)

Copyright (c) 2022 Cherepanin A.I., Pavlova O.V., Kalsin V.A., Konoplyannikov M.A., Kucherova O.N., Baldin V.L., Deryabin S.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies